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Vertex–regular 1–factorizations of the complete graph

Gloria Rinaldi1

Abstract. A 1–factorization of a complete undirected graph is said to be vertex–

regular if it admits an automorphism group G acting on the vertex set in a sharply

transitive manner. Which abstract groups can realize such a situation? The complete

answer is still unknown, but the problem have been solved in some cases. In this survey

we illustrate the state of art on this question. Most of the results were obtained via the

starter method introduced in [7].

1. Introduction: existence and classification

A 1–factor in a graph is a set of pairwise disjoint edges that partition the set
of vertices and a 1–factorization in a graph is a partition of the edge set into 1–
factors. For a general graph it is not so trivial to determine whether it does admit
a 1–factorization. Already the problem of determining whether a given cubic graph
admits a 1–factorization is known to be computationally NP–complete, [13].

Nevertheless, it is well known that the complete undirected graph Kv admits a
1–factorization if and only if it has an even number v of vertices. In what follows
we will always consider v even, if not di↵erently specified, and we will always speak
of 1–factorizations of Kv.

Such factorizations are fairly easy to construct and they probably appeared for
the first time in 1847 in a paper of Kirkman, [16].

Well known is the construction given by Lucas, [18], in 1883. This construction
is a particular case of a more general one which involves the notion of starter in a
group of odd order, [12].

More precisely, let G be a group of odd order v� 1 (written additively and with
identity 0).
A starter in G is set of unordered pairs S = {{si, ti} : 1  i  (v � 2)/2} that
satisfies:

• {si : 1  i  (v � 2)/2} [ {ti : 1  i  (v � 2)/2} = G \ {0}
• {±(si � ti) : 1  i  (v � 2)/2} = G \ {0}
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This definition applies to arbitrary groups of odd order, abelian and non–abelian
ones. A starter permits to construct a 1–factorization F of Kv. Namely, identify
the vertex set of Kv with G [ {1}, 1 /2 G, identify the pairs of distinct elements
of G [ {1} with the set of edges and take the following 1–factors:
F0 = S [ {0,1}, Fa = F0 + a = {{si + a, ti + a} : {si, ti} 2 S} [ {a,1}, a 2 G,
then F = {Fa : a 2 G}.

In any group G of odd order the set of pairs S̄ = {{x,�x} : x 2 G \ {0}} is a
starter, the so called patterned starter. The well known 1–factorization of Lucas,
[18], was obtained via the patterned starter in the cyclic group Zv�1.

As far as I am concerned, the patterned starter is mentioned in literature only
for abelian groups, see [12]. Nevertheless S̄ is a starter even if G is non–abelian.
The proof is quite simple. The first condition holds: G \ {0} is the disjoin union of
two sets X, �X such that x 2 X i↵ �x 2 �X. For the second condition observe
that when x 6= ±y then 2x /2 {2y,�2y}. This is because 2x and x generate the
same subgroup, as well as y and 2y, if 2x 2 {2y,�2y} then x and y generate the
same subgroup and commute, therefore 2x = ±2y necessarily implies either x = y
or x = �y: a contradiction.

Despite the fact that 1–factorizations of a complete graph are so easy to con-
struct, the problem of enumerating them up to isomorphism is very hard: the num-
ber of non–isomorphic ones rapidly explodes as the number of vertices increases.
In particular, a technique developed in [8] permits to prove that the number of
pairwise non–isomorphic 1–factorizations of Kv goes to infinity with v. So, it is
clear that a classification of 1–factorizations is practically impossible. An attempt
can be done requiring the 1–factorizations to satisfy additional properties. Classi-
fication results are obtained by imposing graph theoretic conditions, for example
on the nature of 1–factors: think to the rich literature on perfect, uniform, almost
perfect, sequentially uniform and sequentially perfect 1–factorizations which we will
not consider in this survey.

An important literature goes in the direction of using symmetry criteria:
1–factorizations with non–trivial automorphism groups are considered and attempts
to obtain classifications are done imposing conditions on the automorphism group
and on the way this group acts on vertices, edges and 1–factors.

Recall that an automorphism group of the 1–factorization is a permutation group
on the vertex set preserving the 1–factors. The full automorphism group of a 1–
factorization F is usually denoted by Aut(F). Each subgroup of Aut(F) acts on the
set of vertices, the set of edges and the set of 1–factors, that is F itself. Assumptions
on one or more of these actions sometimes allow a description of the 1–factorization
F and of the automorphism group.

As you can easily see, a 1–factorization of Kv obtained using a starter in a group
G of odd order v � 1 (for example the patterned starter) has non trivial automor-
phism group: it admits G as automorphism group whose action is 1–rotational, i.e.,
G fixes one vertex and acts sharply transitively on the remaining ones. Despite the
fact that these 1–factorizations exist for each v odd, 1–factorizations with non triv-
ial symmetries seem to be rare. An automorphism–free 1–factorization is usually
called rigid. It was proved in [19] that a rigid 1–factorization of Kv exists if and
only if v � 10. Moreover, it was proved in [19] and later in [1], that the number
of non–isomorphic rigid 1–factorizations of Kv goes at infinity with v. It was also
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proved by Cameron (unpublished) and Phelps (unpublished), that the subclass of
rigid 1–factorizations asymptotically covers the class of 1–factorizations.

To confirm this fact, we see that 1–factorizations admitting an automorphism
group which acts multiply transitively on the vertices are sporadic.

In fact, in [9] it is shown that a 1–factorization of Kv with an automorphism
groupG acting 3–transitively on the set of vertices is either the a�ne line–parallelism
of AG(d, 2), that is v = 2d with d � 2, or the 1–factorization of K6 derived from the
cyclic group of order 5. The full automorphism groups are respectively AGL(d, 2)
and PGL(2, 5), [8].

1–factorizations of Kv with an automorphism group G which acts doubly tran-
sitively on the set of vertices are completely determined in [10]. More precisely,
W. Burnside, [11, Section 3.5], showed that a doubly transitive permutation group
has a transitive minimal normal subgroup which is either an elementary abelian
p–group or a non–abelian simple group. In the former case the 1–factorization is
the a�ne line–parallelism of AG(d, 2), that is v = 2d, while in the latter case the
1–factorization is one of the following:

(i) the unique 1–factorization of K6;

(ii) the a�ne line–parallelism of AG(3, 2);

(iii) the unique uniform 1–factorization of type (6, 6) of K12, see [8, Chapter 4];

(iv) the 1–factorization of K28 which is derived from G = P�L(2, 8) and de-
scribed in [10].

For v = 6, 8 and 12 (the first three cases), the automorphism groups are respec-
tively PGL(2, 5), PSL(2, 7) and PSL(2, 11). This last group is doubly transitive
also on the 1–factors, [8].

In this paper we resume the results obtained on the problem of determining
1–factorizations of Kv which admit an automorphism group G which acts sharply
transitively on the set of vertices and so |G| = v. These 1–factorizations are said to
be vertex–regular under G, or simply regular under G or G–regular.

The class of G–regular 1–factorizations was studied mainly considering the iso-
morphism type of G. The first result in this direction is due to Hartman and Rosa,
[14]. They investigated the existence of a cyclic 1–factorization, that is vertex–
regular under the action of a cyclic group. They gave the following non–existence
result.

Theorem 1.1 ( [14]). If v = 2t, with t � 3, then no cyclic 1–factorization of Kv

exists.

In [14] they also proved the existence of a cyclic 1–factorization of Kv when v is
not a power of 2.

Groups of di↵erent isomorphism type were later on considered and the main
attention was deserved to the following question:

Question. For which groups G of even order v, does there exist a G–regular 1–
factorization of the complete graph Kv?

When v is twice an odd number, this problem simplifies somewhat. G must be
the semi–direct product of Z2 with its normal complement and G always realizes
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a 1–factorization of Kv upon which it acts sharply transitively on vertices, see [2,
Remark 1].

When v = 2n and n is even, the complete answer is still unknown. Nevertheless,
several authors have dealt with this problem getting some interesting results.

A first answer can be found in [2]. Namely:

Theorem 1.2 ([2]). For each dihedral group G of order v, there exists a G–regular
1–factorization of Kv.

Observe also that the Question above is a restricted version of problem n.4 in the
list of [24]. Namely problem n.4 asks for a 1–factorization of the complete graph Kv

possessing an automorphism group with a transitive action on the vertex set. The
two versions of the problem are equivalent for abelian groups since every transitive
abelian permutation group is sharply transitive.

In [7] Buratti extended the result of [14] and solved problem n.4 for the abelian
case. Namely he proved the following:

Theorem 1.3 ([7]). For each abelian group G of even order v (except for G cyclic
and v = 2t, t � 3) there exists a G–regular 1–factorization of Kv.

To prove the above Theorem, he introduced in [7] the notion of starter in a group of
even order and showed how the existence of a regular 1–factorization under a group
G can be entirely tested within G. The notion of starter in a group of even order
is essentially di↵erent from that of a starter in a group of odd order because of the
presence of the involutions. We resume the technique of [7] in the next paragraph,
together with the main results obtained applying it.

2. Regular 1–factorizations via starter method

We will always consider v = 2n and we denote by V (Kv) and E(Kv) the set
of vertices and edges of Kv, respectively. Let G be a finite group of order v, in
additive notation and with identity 0. We identify the vertices of Kv with the
group–elements of G and we shall occasionally write KG rather than Kv. We shall
denote by [x, y] the edge with vertices x and y. We always consider G in its right
regular permutation representation. In other words, each group–element g 2 G is
identified with the permutation V (Kv) ! V (Kv), x 7! x+ g. This action of G on
V (Kv) is sharply transitive and induces actions on the subsets of V (Kv) and on
sets of such subsets. Hence, if g 2 G is an arbitrary group–element and S is any
subset of V (Kv) then we write S + g = {x+ g : x 2 S}. In particular, if S = [x, y]
is an edge, then [x, y]+g = [x+g, y+g]. Furthermore, if U is a collection of subsets
of V (Kv), then we write U+g = {S+g : S 2 U}. In particular, if U is a collection
of edges of Kv then U + g = {[x+ g, y + g] : [x, y] 2 U}.

The G–orbit of an edge [x, y] has either length v = 2n or n and we speak of a
long orbit or a short orbit, respectively, which corresponds to whether the orbit is
a 2–factor or a 1–factor. In this case, we call [x, y] a long edge or a short edge,
respectively. If [x, y] is a short edge, then there is a non–trivial group element g so
that [x + g, y + g] = [x, y]. Such a g is unique (g = �x + y) and is an involution;
we call this g the involution associated with the short edge [x, y].

A 1–factor of K2n which is fixed by G necessarily coincides with a short G–orbit
of edges, see [2, Proposition 2.2].

If H is a subgroup of G then a system of distinct representatives for the left
cosets of H in G will be called a left transversal for H in G.
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If [x, y] is an edge in KG we define

@([x, y]) =

( {x� y, y � x} if [x, y] is long

{x� y} if [x, y] is short

�([x, y]) =

( {x, y} if [x, y] is long

{x} if [x, y] is short .

If S is a set of edges of KG we define

@(S) =
[

e2S

@(e) �(S) =
[

e2S

�(e)

where, in either case, the union may contain repeated elements and so, in general,
will return a multiset.

Definition 2.1 ([7, Definition 2.1]). A starter in a group G of even order is a set
⌃ = {S1, · · · , Sk} of subsets of E(KG) together with subgroups H1, · · · , Hk which
satisfy the following conditions:

• @S1 [ · · · [ @Sk = G \ {0};
• for i = 1, · · · , k, the set �(Si) is a left transversal for Hi in G;

• for i = 1, · · · , k, Hi must contain the involutions associated with any short
edge in Si.

We note that G \ {0} is a set, so this definition implies that @([x, y]) are distinct
for all [x, y] in the multiset S1 [ · · ·[Sk. Hence it also follows Si can have no edges
in common with Sj for i 6= j.

The main Theorem of [7] proves the existence of a starter in a finite group
G of order 2n is equivalent to the existence of a 1–factorization of the complete
graph K2n admitting G as an automorphism group acting sharply transitively on
vertices. A starter contains the minimum amount of information which is necessary
to reconstruct the 1–factorization: the first bullet in Definition 2.1 insures that every
edge of KG will occur in exactly one G–orbit of an edge from S1 [ · · · [ Sk. The
other bullets insure the union of the Hi–orbits of edges from Si will form a 1–factor.
Namely, for each index i, we form a 1–factor as [e2S

i

OrbH
i

(e), whose stabilizer in
G is the subgroup Hi; the G–orbit of this 1–factor, which has length |G : Hi|, is
then included in the 1–factorization.

Suppose g 2 G is an element of order 2, and suppose the set S = {[g, 0]} is an
element of a starter in G. Such a set gives rise to a 1–factor which is fixed by G.
Moreover, the edges of this 1–factor are short edges. Viceversa, each set of ⌃ which
gives rise to a 1–factor which is fixed by G is necessarily of this type.
We see two very simple examples.

Example 2.2. Consider D6, the dihedral group of order 6, in multiplicative nota-
tion with identity denoted by 1.

D6 =< a, b : a3 = b2 = 1, ab = ba2 >= {1, a, a2, b, ba, ba2}
A starter in D6 is ⌃ = {S1, S2, S3} with:

S1 = {[1, b], [a, a2]} S2 = {[1, ba]} S3 = {[1, ba2]}
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and with associated subgroups:

H1 = {1, b}, H2 = D6, H3 = D6.

Identify the vertex set of K6 with the elements of D6 and construct the 1–factors:

F1 = OrbH1(S1) = {[1, b], [a, a2], [ba2, ba]}
F2 = OrbH2(S2) = {[1, ba], [a, ba2], [a2, b]}
F3 = OrbH3(S3) = {[1, ba2], [a, b], [a2, ba]}.
The D6–regular 1–factorization is F = {F1, F1a, F1a2, F2, F3} and F2 and F3 are
fixed 1–factors.

Example 2.3. Consider Q8, the Quaternion group of order 8, in additive notation
with identity denoted by 0.

Q8 =< a, b : 4a = 0, 2b = 2a, �b+ a+ b = �a >

Q8 = {0, a, 2a, 3a, b, b+ a, b+ 2a, b+ 3a}
A starter in Q8 is ⌃ = {S1, S2, S3, S4} with:

S1 = {[0, a]} S2 = {[0, 2a]} S3 = {[0, b]} S4 = {[0, b+ a]}
and with associated subgroups:

H1 = {0, b, 2a, b+ 2a}, H2 = Q8, H3 = H4 = {0, a, 2a, 3a}.
Identify the vertex set of K8 with the elements of Q8 and construct the 1–factors:

F1 = OrbH1(S1) = {[0, a], [b, b+ 3a], [2a, 3a], [b+ 2a, b+ a]}
F2 = OrbH2(S2) = {[0, 2a], [a, 3a], [b, b+ 2a], [b+ a, b+ 3a]}
F3 = OrbH3(S3) = {[0, b], [a, b+ a], [2a, b+ 2a], [3a, b+ 3a]}
F4 = OrbH4(S4) = {[0, b+ a], [a, b+ 2a], [2a, b+ 3a], [3a, b]}.
The Q8–regular 1–factorization is F = {F1, F1 + a, F2, F3, F3 + b, F4, F4 + b + a}
and F2 is the unique fixed 1–factor.

The main result of [14] states that the cyclic groups of 2–power order at least 8
never can realize a vertex–regular 1–factorization. In what follows we see how this
result can be achieved via starter method.

Proposition 2.4. [7]. A cyclic group of order 2t, t � 3 has no starter.

Proof. Let G =< a >= {0, a, · · · , (2t � 1)a} be a cyclic group of order 2t,
t � 3 and suppose the existence of a starter ⌃ = {S1, · · · , Sr} in G. Take the
1–factorization obtained via ⌃. Every G–orbit of 1–factors has either even length
or length 1. As the total number of 1–factors is 2t � 1, then at least a G–orbit of
length 1 exists, i.e. the 1–factorization has at least one fixed 1–factor. A fixed 1–
factor arises from a short edge and since G has a unique involution, namely 2t�1a,
such a fixed 1–factor arises from the set Si = {[0, 2t�1a]} 2 ⌃. Without loss of
generality we may assume Si = S1. That also means that each set Si, with i � 2,
contains only long edges, that is for each edge [a, b] 2 Si, @[a, b] = {a � b, b � a}
and �(Si) = {a, b}.
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We say that an edge e is of type 00 if its vertices are both even multiple of a; e
is of type 11 if both its vertices are odd multiple of a and finally e is of type 01 if
its vertices have distinct parity.

Given a set Si 2 ⌃, with i � 2, we denote by x, y and z the number of edges in
Si of type 00, 01 and 11 respectively. Then �(Si) contains 2x+ y even multiple of
a and 2z+ y odd multiple of a. Moreover, �(Si) is a left transversal for a subgroup
Hi of G and since Hi 6= G, Hi does not contain odd multiple of a. This implies
that in �(Si) the number of odd multiple of a equals the number of even multiple
of a, i.e., 2z = 2x.

As remarked above any edge of Si is long, then @Si contains 2x + 2z = 4x
non–zero elements of G which are even multiple of a.

It follows that |@⌃\ < 2a > | = 4t + 1, where t is a positive integer, that is
|@⌃\ < 2a > | ⌘ 1 (mod 4). But by the definition of starter, |@⌃\h2ai| = 2n�1�1,
that is |@⌃\h2ai| ⌘ 3 (mod 4). That gives a contradiction and so there is no starter
in G.

⇤
In view of the previous result, it was rather natural to extend the analysis of the
existence problem for starters to arbitrary finite 2–groups and to finite groups of
even order admitting a large cyclic subgroup, the largest possibility for “large” being
namely “of index 2.” As a first step in this direction, finite non–abelian 2–groups
(of order � 8) admitting a cyclic subgroup of index 2 were considered in [3]. These
groups are known. Satz 14.9 in [15] divides them into four isomorphism types:
the dihedral groups, the generalized quaternion groups (i.e., dicyclic 2–groups), the
semidihedral groups and another class, respectively. The dihedral groups admit
starters by the results in [2]. The other three types were examined in details in [3].
In the same paper the class of dicyclic groups of order 2n, n even, was also studied.
The following result was proved:

Theorem 2.5 ([3]). [3] Let G be a finite group of order 2n. Assume one of the
following holds:

• n = 2m, m � 2 and G is a non–cyclic group admitting a cyclic subgroup of
index 2;

• n is even and G is a dicyclic group.

Then G admits a starter, i.e., there exists a G–regular 1–factorization of K2n.

For readers convenience we recall how these groups can be presented.
The dicyclic group of order 2n = 4s can be presented as follows [23, p.189]:

G = ha, b : 2sa = 0, 2b = sa,�b+ a+ b = �ai .
We have G = {0, a, · · · , (2s � 1)a, b, b + a, · · · , b + (2s � 1)a} and the relations
ra + b = b � ra, (b + ra) � (b + ta) = (t � r)a hold for r, t = 0, 1, · · · , (2s � 1).
Furthermore sa is the unique involution in G. In particular, if s = 2m�1, then G is a
generalized quaternion group of order 2m+1. When m = 2 we have the Quaternion
group Q8 already seen in Example 2.3.
The semidihedral group of order 2m+1 can be presented as follows:

G = ha, b : 2ma = 0, 2b = 0,�b+ a+ b = (2m�1 � 1)ai .
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The elements of G are 0, a, 2a, · · · , (2m�1)a, b, b+a, b+2a, · · · , b+(2m�1)a and
for r = 0, 1, · · · , 2m�1 we have ra+b = b�ra if r is even and ra+b = b+(2m�1�r)a
if r is odd, respectively. Furthermore there exist precisely 2m�1 + 1 involutions in
G, namely all elements b+ ra with r even and the element 2m�1a.
The 4th isomorphism type of non–abelian 2–group of order 2m+1 with a cyclic
subgroup of index 2 can be presented as follows ([15, p.91]:

G = ha, b : 2ma = 0, 2b = 0,�b+ a+ b = (2m�1 + 1)ai .
The elements of G are 0, a, 2a, · · · , (2m�1)a, b, b+a, b+2a, · · · , b+(2m�1)a and
for r = 0, 1, · · · , 2m�1 we have ra+b = b+ra if r is even and ra+b = b+(2m�1+r)a
if r is odd, respectively. Furthermore, there exist precisely three involutions in G,
namely b, 2m�1a, b+ 2m�1a.

Another result on 2–groups is the following:

Theorem 2.6 ([5]). Let G be a 2–group of order 2m, m � 1, with an elementary
abelian Frattini subgroup. Then G admits a starter, i.e. there exists a G–regular
1–factorization of K2m .

Recall that the Frattini subgroup of a group G is the intersection of all maximal
subgroups of G.

In view of the previous results, one might conjecture that the cyclic groups of
2–power order at least 8 are the only 2–power order groups which do not posses
starters. Indeed it is proved in [5] that the conjecture is true for the 2–groups of
order  64.

In [4] a “doubling construction” for regular 1–factorizations was proposed. This
construction starts from a regular 1–factorization of the complete graph K2n under
the action of a group H, and produces a 1–factorization of K4n which is regular
under the action of a group G having H as subgroup of index 2. This construction
is possible under some assumptions on G and H. The main result of [4] extends
the result of [2] to the entire class of generalized dihedral group. A generalized
dihedral group of order 2n can be presented as follows, [22, p.210]: let H be an
abelian group of order n possesing an element b which is not an involution, 2b 6= 0.
Let ⌘ : H �! H be the map defined by ⌘(a) = �a for every a 2 H. It follows from
⌘(b) 6= b that ⌘ is an involution in Aut(H). The relative holomorph < ⌘ > +H of
H is denoted by DihH and called a generalized dihedral group. In particular, if H
is cyclic, DihH is the dihedral group D2n.
The following is proved in [4]:

Theorem 2.7 ([4]). Let DihH be a generalized dihedral group of order 2n. There
exists a DihH–regular 1–factorization of K2n.

In [21] the problem of constructing starters in groups which are the direct or
semidirect sum of groups having starters was considered. The aim was to enforce
the conjecture that the cyclic groups of 2–power orders are the only exceptions.

The following results were obtained:

Theorem 2.8 ([21]). Let G and H be finite groups of even order. Suppose that
a starter exists in G as well as in H. There exists a regular 1–factorization of a
complete graph under the action of G�H (the direct sum of G and H).
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Theorem 2.9 ([21]). Let H be a group of odd order d and let G be an abelian
group of even order 2n. There exists a regular 1–factorization of K2nd under the
action of G�H. (Except for d = 1 and G�H ' Z2n , n � 3).

Theorem 2.10 ([21]). Let G be a group of even order 2n which is the direct sum
of its Sylow 2–subgroup P with its complement. If P is either abelian or contains
a cyclic subgroup of index 2, then there exists a G–regular 1–factorization of K2n.
(Except for G = Z2n , n � 3).

Obviously many other results can be proved rearranging the previous proposi-
tions. For example, any Hamiltonian group (which is defined to be a non–abelian
group in which every subgroup is normal) is the direct sum of a quaternion group
Q8, together with an elementary abelian 2–group A and an odd order group H (see
[23, p.253]),i.e., Q8 � A �H. If we apply Theorem 2.9 to A and H and Theorem
2.8 to Q8 and A�H, we can state:

Theorem 2.11 ([21]). Let G be an Hamiltonian group of order 2n. There exists a
G–regular 1–factorization of K2n.

Moreover, each nilpotent group is the direct sum of its Sylow subgroups [23,
p.144], then we can state:

Theorem 2.12 ([21]). Let G be a nilpotent group of order 2n such that the Sylow
2–subgroup of G is either abelian or contains a cyclic subgroup of index 2. There
exists a G–regular 1–factorization of K2n.

All the groups considered above are solvable. A first example of non solvable
groups of even order which have a starter was given in [20]. Namely, they proved
the following:

Theorem 2.13 ([20]). For any prime p there exists a regular 1–factorization of
K(2p)! under the action of the symmetric group S2p.

Up to now complete undirected graphs on a finite number of vertices were con-
sidered. Then the problem deals with finite groups. The same problem can also
be addressed to complete graphs on a countable but not finite number of vertices.
This was done in [6] and the following result was proved:

Theorem 2.14 ([6]). For each finitely generated abelian infinite group G there
exists a 1–factorization of the countable complete graph admitting G as an auto-
morphism group acting sharply transitively on vertices.

3. Vertex–regular 1–factorizations with an invariant 1–factor

When a regular 1–factorization of K2n exists under the action of a suitable group
G, it may happen that G fixes some 1–factor. We have already noticed that if this
is the case, then the fixed 1–factor is the orbit under G of a short edge. Such a
situation can be realized depending on the isomorphism type of the group: a certain
starter type in G depends on isomorphism type of G.

We are still far from a classification of such groups, nevertheless some results
were obtained.

Theorem 3.1 ( [21]). Let H be a group of odd order 2n + 1 and consider the
group Z2m � H. Suppose it is either m � 3 or m = 1 and |H| ⌘ 3 (mod 4). No
1–factorization of K2m(2n+1) admits Z2m �H as sharply vertex–transitive automor-
phism group fixing a 1–factor.
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To prove Theorem 3.1 the starter technique was used. A similar result was
obtained in [17] without using the notion of starter. Namely:

Theorem 3.2 ([17, Theorem B]). Let G be a nilpotent group of even order n and
whose Sylow 2–subgroup is cyclic. If a 1–factorization of Kn admits G as sharply
vertex–transitive automorphism group fixing a 1–factor, then it is necessarily n ⌘ 2
(mod 8) or n ⌘ 4 (mod 8).

In [14, case 2, Theorem 3.1], a cyclic 1–factorization of K4d, d odd, with a 1–factor
fixed by the cyclic group was constructed. This result was extended:

Theorem 3.3 ([21]). Let G be the direct sum of Z4 with a group H of odd order
d. There exists a G–regular 1–factorization of K4d with a 1–factor fixed by G.

In [17, p.186-187], the non–existence of a 1–factorization of K2d, d ⌘ 1 (mod 4),
which is regular under a group G which is nilpotent and fixes a 1–factor was con-
jectured.

The conjecture was proved when d is a prime p, hence G = Z2 � Zp, p ⌘ 1
(mod 4). Namely:

Theorem 3.4 ([21]). Let p be a prime with p ⌘ 1 (mod 4). No 1–factorization
of K2p admits Z2 � Zp as a sharply vertex–transitive automorphism group fixing a
1–factor.

Remark. The conjecture is false if we consider the complete graph on 2d vertices,
with d not a prime and d ⌘ 1 (mod 4).

Here is a counterexample (see also [21]):

Example 3.5. Consider the cyclic group Z2 � Z21. Let Z2 = hai and Z21 = hbi.
A starter in Z2 � Z21 is ⌃ = {S1, S2, S3, S4, S5, S6, S7} with:

S1 = {[0, a]} S2 = {[0, 7b], [a, a+ 8b], [2b, a+ b]}

S3 = {[0, 6b], [b, 5b], [2b, 4b], [3b, a+ 6b], [a, a+ 5b], [a+ b, a+ 4b], [a+ 2b, a+ 3b]}
S4 = {[0, 9b], [a+ b, a+ 11b], [b, a+ 3b], [3b, a+ 7b], [4b, a+ 9b], [5b, a+ 13b] ,

[6b, a+ 12b]}
S5 = {[0, a+ 7b]} S6 = {[0, a+ 9b]} S7 = {[0, a+ 10b]}

and with associated subgroups:

H1 = Z2 � Z21 , H3 = H4 = h7bi , H2 = h3bi , H5 = H6 = H7 = Z21 .

The fixed 1–factor is given by S1, namely F1 = OrbZ2�Z21([0, a]).
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