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Geometry of harmonic maps and biharmonic maps

Hajime Urakawa1

Abstract. A biharmonic map is a critical point of the bienergy in the space of C1

maps between two Riemannian manifolds, and it is a natural extension of a harmonic map

which is a critical point of the energy. In this paper, we give a brief survey on our recent

works for biharmonic maps

1. Introduction

A biharmonic map is a critical point of the bienergy in the space of C1 maps
between two Riemannian manifolds, and it is a natural extension of a harmonic
map which is a critical point of the energy. In this paper, we give a brief survey
on our recent works for biharmonic maps. The topics with which we treat in this
paper will be as follows.

Table of Topics:
(1) from harmonic maps to biharmonic maps,
(2) classification and construction of biharmonic maps,
(3) B-Y. Chen’s conjecture,
(4) bubbling phenomena of biharmonic maps,
(5) biharmonic Lagrangian submanifolds of a symplectic manifold,
(6) k-harmonic maps and k-harmonic B-Y. Chen’s conjecture.

2. From harmonic maps to biharmonic maps

2.1. From the submanifold theory. One source of biharmonic map theory is
submanifold theory due to the work of B-Y. Chen. B-Y. Chen proposed the follow-
ing problem in his paper ([7]): some open problems and conjectures on submanifolds
of finite type, Soochow J. Math., 17(1991), 169–188.

Let us consider an isometric immersion ' : (Mm, g) ,! (Rk, h0) and '(x) =
('1(x), · · · ,'k(x)) (x 2 M). Then it holds that

�' := (�'1, · · · ,�'k) = mH ,
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where H := (1/m)
Pm

i=1 B(ei, ei), the mean curvature vector field, where B is the
second fundamental form defined by

B(X,Y ) := D0
X('⇤Y )� '⇤(rXY ) ,

for vector fields X, Y on M . Here, r, rN , and D0, are the Levi-Civita connections
of Riemannian manifolds (M, g), (N,h), and the standard Euclidean space (Rk, h0),
respectively. The Laplacian � of (M, g) is defined by

�f = �
m
X

i=1

{ei(eif)�re
i

eif} (f 2 C1(M)) ,

where {ei}m
i=1 is a locally defined orthonormal frame field on (M, g). Then

Definition 2.1. An isometric immersion ' : (Mm, g) ,! (Rk, g0) is minimal if
H ⌘ 0. Furthermore Chen defined ([7]) that ' is to be biharmonic if

�H = �(�') ⌘ 0 .

He showed ([7]) that

Theorem 2.2. If dim M = 2, any biharmonic submanifold is minimal.

Then he raised the following conjecture ([7]).
• B-Y. Chen’s Conjecture:
Any biharmonic isometric immersion into (Rk, g0) must be minimal.

There is an alternative approach from theory of harmonic map. For a smooth
map ' : (M, g) ! (N,h), the energy functional is given by

E(') :=
1
2

Z

M

kd'k2 vg .

Then the first variation formula is:

d

dt

�

�

�

�

t=0

E('t) = �
Z

M

h⌧('), V i vg .

Here, V is a variation vector field given by Vx = (d/dt)|t=0't(x) 2 T'(x)N , (x 2 M),
and ⌧(') is the tension field of ' given by

⌧(') :=
m
X

i=1

B(')(ei, ei) ,

where

B(')(X,Y ) := rN
d'(X)d'(Y )� d'(rXY ) (X,Y 2 X(M)) .

Then ' : (M, g) ! (N,h) is harmonic if ⌧(') = 0.
The second variation formula for the energy functional E(·) for a harmonic map

' : (M, g) ! (N,h) is given as follows.

d2

dt2

�

�

�

�

t=0

E('t) =
Z

M

hJ(V ), V ivg .

Here, J is an elliptic second order partial di↵erential operator acting on �('�1TN),
called the Jacobi operator given by

J(V ) := �V �R(V ) (V 2 �('�1TN)) ,
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where

�V := r⇤rV = �
m
X

i=1

{re
i

(re
i

V �rr
e

i

e
i

V )} ,

R(V ) :=
m
X

i=1

RN (V, d'(ei))d'(ei) ,

where r is the induced connection on the induced bundle '�1TN from rN by ',
and RN is the Riemannian curvature tensor on (N,h) defined by RN (U, V )W =
rN

U (rN
V W )�rN

V (rN
U W )�rN

[U,V ]W , for vector fields U, V, W on N .

In 1983, Eells and Lemaire [11] introduced the notion of k-harmonic map. Let
us consider the k-energy functional due to Eells and Lemaire ([11]) is

Ek(') :=
1
2

Z

M

�

�(d + �)k'
�

�

2
vg (k = 1, 2, · · · ) .

Note that

E1(') =
1
2

Z

M

kd'k2 vg and E2(') =
1
2

Z

M

k⌧(')k2 vg .

For k = 2, the first variation formula for E2('):

(2.1)
d

dt

�

�

�

�

t=0

E2('t) = �
Z

M

h⌧2('), V i vg ,

where ⌧2(') is called the bitension field given by

(2.2) ⌧2(') := J(⌧(')) = �⌧(')�R(⌧(')) ,

and ' : (M, g) ! (N,h) is called biharmonic if ⌧2(') = 0.
The second variation formula for the bienergy was obtained by G.Y. Jiang [20]

and C. Oniciuc [38], independently. The second variation formula for E2(') is given
by

(2.3)
d2

dt2

�

�

�

�

t=0

E2('t) =
Z

M

hJ2(V ), V ivg .

Here,

(2.4) J2(V ) = J(J(V ))�R2(V ) ,

where
R2(V ) = RN (⌧('), V )⌧(')+

+2 trRN (d'(·), ⌧('))r·V + 2 trRN (d'(·), V )r·⌧(')+

+tr(rN
d'(·)R

N )(d'(·), ⌧('))V +

(2.5) +tr(r⌧(')R
N )(d'(·), V )d'(·) .

Then the notions of indices and nullities for E2 are obtained as follows.
The index and nullity for a harmonic map are defined by

(2.6) Index(') := dim(��<0E�) , Nullity(') := dim E0 ,

and also, the index and nullity for a biharmonic map are defined by

(2.7) Index2(') := dim(��<0E
2
�) , Nullity2(') := dim E2

0 ,
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where E�, and E2
� are the eigenspaces of J , and J2 with the eigenvalues �, respec-

tively.
Then it holds ([16]) that

Theorem 2.3. If ' is a harmonic map, it is biharmonic and

(2.8) Index2(') = 0 and Nullity2(') = Nullity(') .

For the index and nullity for the Hopf map and further calculations, see E.
Loubeau and C. Oniciuc’s work ([25]).

3. Biharmonic maps into Sn

We turn to hypersurface theory in the symmetric spaces of rank one and of
compact type. We first consider biharmonic hypersurfeces of the unit sphere.

Theorem 3.1 (Jiang, [20]). Let ' : (Mm, g) ! Sm+1( 1p
c
) be an isometric im-

mersion. Assume that the mean curvature of ' is nonzero constant. Then ' is
biharmonic if and only if kB(')k2 = mc.

By using this theorem, we can give a classification of biharmonic isoparametric
hypersurfaces in Sn(1). To do it, let us recall the theory of isoparametric hyper-
surfaces in the unit sphere Sn(1).

Let ' : (M, g) ! Sn(1) be an isometric immersion, and assume that dim M =
n � 1. Let us recall the notion of the shape operator A⇠ : TxM ! TxM (x 2 M)
which is defined by

g(A⇠X,Y ) = h'⇤(rXY ), ⇠i (X, Y 2 X(M)) ,

where ⇠ is the unit normal vector field along M . The eigenvalues of A⇠ are called the
principal curvatures, and M is called isoparametric if all the principal curvatures
are constant in x 2 M . Thus we can apply Theorem 3.1 to all the isoparametric
hypersurfaces, because the mean curvature of ' is constant because it is 1/(m� 1)
times the sum of all principal curvature with their multiplisities.

Now let us recall the works of E.Cartan, H.F. Münzner ([30], [31]), H. Ozeki,
and M. Takeuchi ([40], [41]) (See also [28]).

Theorem 3.2. Assume that ' : (M, g) ! Sn(1) is an isoparametric hypersurface.
Then there exists a homogeneous polynomial F on Rn+1 of degree d such that M
is given by

M = '�1(t), for some � 1 < t < 1 ,

where ' := F |Sn(1). Say M = M(t).
All the principal curvatures are given as

k1(t) > k2(t) > · · · > kd(t)(t) ,

with their multiplicities mj(t) (j = 1, · · · , d(t)). Here, d = d(t) is constant in t,
and d = 1, 2, 3, 4, or 6.

Then our main result is the following classification of biharmonic isoparametric
hypersurfaces in the unit sphere Sn ([16], [17]).

Theorem 3.3. Assume that ' : (M, g) ! Sn(1) is a biharmonic isoparametric
hypersurface in the unit sphere. Then (M, g) is one of the following three cases:

• M = Sn�1(1/
p

2) ⇢ Sn(1) (a small sphere, Oniciuc),
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• M = Sn�p(1/
p

2) ⇥ Sp�1(1/
p

2) ⇢ Sn(1) (n � p 6= p � 1), (the Cli↵ord
torus, Jiang),

• ' : (M, g) ! Sn(1) is minimal.

4. Biharmonic maps into the projective spaces

The first case is the complex projective space CPn. Let us begin the following
theorem ([16], [17]) which is an analogue of Theorem 3.1 in the case of the complex
projective space.

Theorem 4.1. Let (M, g) be a real (2n�1)-dimensional compact Riemannian man-
ifold, ' : (M, g) ! CPn(c), an isometric immersion into the projective space with
constant holomorphic sectional curvature c. Assume that ' : (M, g) ! CPn(c) has
nonzero constant mean curvature. Then ' is biharmonic if and only if kB(')k2 =
((n + 1)/2) c.

In order to apply this theorem to biharmonic isometric immersions, let us recall
R. Takagi’s work on classification of all the homogeneous real hypersurfaces in CPn

([47]).

Theorem 4.2 ([47]). Let U/K be a compact Hermitian symmetric space of rank
two, and let u = k� p, the Cartan decomposition. Then

• M̂ := Ad(K)A ⇢ p is a hypersurface in S2n+1 for some regular element
A 2 p with kAk = 1. Here, we put dimC p = n + 1.

• M = ⇡(M̂) ⇢ CPn give all real homogeneous hypersurfaces in CPn, where

⇡ : Cn+1 � {0} = p� {0}! CPn

is the natural projection.

Theorem 4.3 ([47]). All the homogeneous real hypersurfaces in CPn are classified
into the following five types:

• (A type) U/K =
SU(s + 1)⇥ SU(t + 1)

S(U(s)⇥ U(1))⇥ S(U(t)⇥ U(1))
,

• (B type) U/K = SO(m + 2)/(SO(m)⇥ SO(2)),
• (C type) U/K = SU(m + 2)/S(U(m)⇥ U(2)),
• (D type) U/K = O(10)/U(5),
• (E type) U/K = E6/(Spin(10)⇥ U(1)).

Then we can state our main result ([16], [17]):

Theorem 4.4. All the biharmonic homogeneous real hypersurfaces in CPn(4) are
classified as follows. Let M be a homogeneous real hypersurface in CPn(4). Then
M is one of the types A ⇠ E.

(I) For all the types, there exists a unique orbit M which is a minimal hyper-
surface in CPn(4) as in Theorem 4.3.

(II) There exists a unique orbit M ⇢ CPn(4) which is biharmonic but not har-
monic in each the types A, D and E. There are no such orbits in the types
B and C.

The next is real hypersurfeces in the quaternionic projective space HPn(c). We
first show the following:
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Theorem 4.5. Let ' : (M, g) ! HPn(c) be an isometric immersion with nonzero
constant mean curvature, dim M = 4n � 1. Then ': biharmonic if and only if
kB(')k2 = (n + 2)c.

For cases of the non-compact duals of the Sn(1), CPn(4), or HPn(c), it holds
that

kB(')k2 = (n� 1)c, kB(')k2 =
n + 1

2
c or kB(')k2 = (n + 2)c (respectively).

Therefore, every biharmonic hypersurfaces in (Rn, g0), or one of the classical rank
one symmetric spaces of non-compact type with constant mean curvature must be
minimal.

Then we give a classification of all biharmonic homogeneous hypersurfaces in
HPn(4) ([16], [17]).

Theorem 4.6.

(I) (J. Berndt) All the homogeneous real hypersurfaces in HPn(4) are classified
into of the three types.

(II) In each types, there exist minimal homogeneous real hypersurfaces in
HPn(4).

(III) In each types, there exist biharmonic nonminimal homogeneous real hyper-
surfaces in HPn(4).

5. Conformal change and biharmonic maps

In this section, we want to treat with the O.D.E. method to construct biharmonic
non-harmonic maps, i.e., to give the reduction theorem of biharmonic map equation
into the ordinary di↵erential equation, and to give existence and non-existence
theorem due to the joint work with H. Naito (cf. [32]).

Let us recall a work due to P. Baird and D. Kamissoko ([4]) on constructing
biharmonic maps by using conformal change of metrics. Our setting is a little
bit di↵erent from them. Consider a C1 mapping ' : (M, eg) ! (N, h) with eg =
f2/(m�2)g, f 2 C1(M), f > 0 (m := dimM > 2).

We give a theorem of conformal change of bienergy tension field.

Theorem 5.1. For ' 2 C1(M,N), the bienergy tension field, denoted by ⌧2('; eg,h)
of ' : (M, eg) ! (N,h) is given by

f2m/(m�2)⌧2('; eg, h) = �m� 6
m� 2

f rX⌧g(') + f2 Jg(⌧g('))�

�
⇢

4
(m� 2)2

|X|g2 +
2

m� 2
f(�gf)

�

⌧g(')�

�f�1

⇢

m2

(m� 2)2
|X|g2 +

m

m� 2
f (�gf)

�

d'(X)+

+
m + 2
m� 2

rXd'(X) + f Jg(d'(X)) ,

where X = rgf 2 X(M).
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In the case that ' is the identity map of the Euclidean space, we give the reduc-
tion in the following.

Let (M, g) = (Rm, g0), (m � 3), the standard Euclidean space, and f 2 C1(Rm)
is given by

f(x1, x2, · · · , xm) = f(x1) = f(x) ,

where we denote by x = x1, and its di↵erentiation of f by f 0. Then the identity
map of Rm, id : (Rm, f2/(m�2)g0) ! (Rm, g0) is biharmonic if and only if

(5.1) f2 f 000 � 2
m + 1
m� 2

f f 0 f 00 +
m2

(m� 2)2
f 03 = 0 .

Then we have the following results (joint work with H. Naito, [32]).

Theorem 5.2. Assume that m � 3. Then

(i) (m � 5) there exists no positive global C1 solution f on R of the ODE.
(ii) (m = 4) f(x1) = a/ cosh(b x1 + c) is a global positive C1 solution of the

ODE for every a > 0, b and c.
(iii) (m = 3) there exists a positive C1 solution f , and no positive periodic

solution f on R.

Corollary 5.3. The identity map of the 4-dimensional Euclidean space
id : (R4, (a/ cosh(b x1 + c)) g0) ! (R4, g0), is a proper biharmonic map, where,
(x1, · · · , x4) is the standard coordinate of R4.

One of main ingredients of our method is the following:

Theorem 5.4. Let ' : (M2, g) ! (Nn�1, h) be any harmonic map (n � 2). For a
positive solution f of

(5.2) f2 f 000 � 8 f f 0 f 00 + 9 f 03 = 0 ,

let f(x, t) := f(t), (x, t) 2 M⇥R, and e' : M⇥R 3 (x, t) 7! ('(x), t) 2 N⇥R. Then
the C1 map e' : (M ⇥ R, f2 (g + dt2)) ! (N ⇥ R, h + dt2) is a proper biharmonic
map.

In the case of m = 4, for every a > 0, b, and c 2 R, the C1 map
e' :

�

M ⇥ R, (a/ cosh(bt + c)) (g + dt2)
�

! (N ⇥ R, h + dt2) is a proper biharmonic
map.

Corollary 5.5. Let (M2, g) be any Riemannian surface, and for a positive C1

solution of

(5.3) f2 f 000 � 8 f f 0 f 00 + 9 f 03 = 0 ,

let f(x, t) := f(t), (x, t) 2 M ⇥ R. Then

(1) the identity map id : (M ⇥ R, f2 (g + dt2)) ! (M ⇥ R, g + dt2) is a proper
biharmonic map.

(2) Let m = 4. For a > 0, b, and c 2 R, the identity map
id :

�

M ⇥ R, (a/ cosh(bt + c)) (g + dt2)
�

! (M ⇥ R, g + dt2) is a proper
biharmonic map.



48 Hajime Urakawa

6. Biharmonic maps into compact Lie groups

In this section, we want to describe all the harmonic maps and biharmonic maps
into compact Lie groups. Let us recall the theories of harmonic maps into Lie
groups (cf. K. Uhlenbeck [48], and J.C. Wood [54]). Then we have to extend them
to biharmonic maps into compact Lie groups.

Let G be a compact Lie group, and h a bi-invariant Riemannian metric on G
corresponding to Ad(G)-invariant inner product h , i on g.

Let ✓ be the Maurer-Cartan form on G which is defined by ✓y(Zy) = Z (Z 2 g,
y 2 G).

For a C1 map  : M ! G, let ↵ :=  ⇤✓. Then the tension field ⌧( ) 2
�( �1TG) is given by

(6.1) h✓, ⌧( )i = ✓ � ⌧( ) = ��↵ ,

i.e.,

(6.2) ✓ (x)(⌧( )(x)) = �(�↵)x (x 2 G) .

We can calculate the bitension field as follows:

(6.3) ✓(⌧2( )) = ✓(J (⌧( ))) .

Theorem 6.1. For a C1 map  : (M, g) ! (G, h),

(6.4) ✓(J (⌧( ))) = ��g d (�↵)� Traceg([↵, d �↵]) .

As a corollary, we have

Corollary 6.2. We have
(1)  : (M, g) ! (G, h) is harmonic if and only if �↵ = 0.
(2)  : (M, g) ! (G, h) is biharmonic if and only if

(6.5) �g d �↵+ Traceg([↵, d�↵]) = 0 .

In the Case (M, g) = (R, g0), let  : R 3 t 7!  (t) 2 (G, h), a C1 curve, and
consider the g-valued 1-form ↵ :=  ⇤✓ on R. Then the 1-form ↵ =  ⇤✓ = F (t) dt
satisfies

F (t) = ✓

✓

 ⇤

✓

@

@t

◆◆

= L�1
 (t)⇤ 

0(t) , �↵ = �F 0(t) .

Then  is harmonic if and only if

(6.6) �↵ = 0 () F 0(t) = 0 ()

(6.7) ()  : (R, g0) ! (G, h), a geodesic .

Furthermore, in the Case (M, g) = (R, g0), we have the following.
To see the biharmonic map equation, we have

(6.8) �g0d�↵ = � @2

@t2
(�F 0(t)) = F (3) ,

(6.9) Traceg0 [↵, d�↵] = � [F (t), F 00(t)] .

Then  is biharmonic if and only if

(6.10) F (3) � [F (t), F 00(t)] = 0 .
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Furthermore let us consider  (t) = exp(X(t)), where X : g ! g is a C1-
mapping. Then ↵ = F (t) dt is given by

(6.11) ↵(t)(
@

@t
) = F (t) =

1
X

n=0

(�adX(t))n

(n + 1)!
(X 0(t)) .

Now let us consider the Case: (M, g) = (R, g0), G = SU(2). In the case G =
SU(2), and g = su(2),

hX,Y i := �2 Trace(XY ) , X, Y 2 su(2) .

We take as an orthonormal basis {Xi}3
i=1 of su(2),

X1 =
✓ p

�1/2 0
0 �

p
�1/2

◆

, X2 =
✓

0 1/2
�1/2 0

◆

,

X3 =
✓

0
p
�1/2p

�1/2 0

◆

.

It holds that

[X1, X2] = X3 , [X2, X3] = X1 , [X3, X1] = X2 .

Then we have

F (t) =
✓

� ap
a2 + 1

sin t

◆

X1+

(6.12) +
✓

ap
a2 + 1

cot t

◆

X2 +
1p

a2 + 1
X3 .

But it is di�cult for us to find X(t) satisfying that

F (t) =
1
X

n=0

(�adX(t))n

(n + 1)!
(X 0(t)) ,

for a given F (t) such as the above.

7. Biharmonic maps into Lie groups and integrable systems

In this section, we consider a C1 map

 : (R2, g) � ⌦ ! (G, h) ,

where g := µ2 g0 with µ > 0, a C1 function on ⌦, G, a compact linear Lie group,
and h, a bi-invariant Riemannian metric corresponding to the Ad(G)-invariant inner
product h , i on g. Then we have

↵ :=  ⇤✓ =  �1d .

We first want to describe the harmonic map equations.
If we put Ax :=  �1(@ /@x), Ay :=  �1(@ /@y), we have

�↵ = �µ�2

⇢

@

@x
Ax +

@

@y
Ay

�

.

Then  is harmonic if and only if

(7.1)
@

@x
Ax +

@

@y
Ay = 0 ,



50 Hajime Urakawa

where Ax and Ay are g-valued 1-forms on ⌦, and satisfy the integrability condition:

(7.2)
@

@x
Ay �

@

@y
Ax + [Ax, Ay] = 0 .

Conversely, if two g-valued 1-forms Ax and Ay on ⌦ satisfy the above two equa-
tions (7.1) and (7.2), then there exists a harmonic map  : ⌦ ! (G, h) with
 �1(@ /@x) = Ax and  �1(@ /@y) = Ay.

Now we want to describe the biharmonic map equations. We have

Theorem 7.1.
(1)  is biharmonic is and only if

(7.3)
✓

@2

@x2
+

@2

@y2

◆

(�↵)� @

@x
[Ax, �↵]� @

@y
[Ay, �↵] = 0 .

(2) If we define the g-valued 1-form � by

(7.4) � := [Ax, �↵] dx + [Ay, �↵] dy ,

then,

(7.5) �� = �µ�2

✓

@

@x
[Ax, �↵] +

@

@y
[Ay, �↵]

◆

.

(3) Thus  is biharmonic if and only if

(7.6) �(d�↵� �) = 0 .

Now, we want to consider the complexifications.
Take the complex coordinate z = x + iy (i =

p
�1). Then dz = dx + idy,

dz = dx� idy,

@

@z
=

1
2

✓

@

@x
� i

@

@y

◆

,
@

@z
=

1
2

✓

@

@x
+ i

@

@y

◆

.

Extend ↵ to a gC-valued 1-form on ⌦ as

↵ = Ax dx + Ay dy = Az dz + Az dz .

Then

(7.7) ��↵ = µ�2

✓

@

@x
Ax +

@

@y
Ay

◆

= 2µ�2

✓

@

@z
Az +

@

@z
Az

◆

,

(7.8) the integrability:
@

@z
Az �

@

@z
Az + [Az, Az] = 0 .

Then the harmonic and biharmonic conditions can be described as follows. Let
 : (R2, g) � ⌦ ! (G, h) with g = µ2g0.
 is harmonic if and only if

(7.9)
@

@z
Az +

@

@z
Az = 0 .

For  , to be biharmonic if and only if

(7.10)
@

@z
Bz +

@

@z
Bz = 0 .
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Here, B = Bz dz + Bz dz is a gC-valued 1-form on ⌦ defined by

(7.11)

8

>

>

<

>

>

:

Bz :=
@

@z
(�↵)� [Az, �↵] ,

Bz :=
@

@z
(�↵)� [Az, �↵] ,

where

�↵ = �2µ�2

✓

@

@z
Az +

@

@z
Az

◆

.

Then our problem is how to solve the biharmonic map equation.
Step 1: Solve the harmonic map equation (1):

(7.12)
@

@z
Bz +

@

@z
Bz = 0 ,

@

@z
Bz �

@

@z
Bz + [Bz, Bz] = 0 .

Step 2: For such B, solve A of the partial di↵erential equations (2):

(7.13)

8

>

>

<

>

>

:

@

@z
(�↵)� [Az, �↵] = Bz ,

@

@z
(�↵)� [Az, �↵] = Bz ,

@

@z
Az �

@

@z
Az + [Az, Az] = 0 ,

where

�↵ := �2µ�2

✓

@

@z
Az +

@

@z
Az

◆

.

Step 3: For such A = Azdz + Azdz, solve a C1 mapping  : ⌦ ! G satisfying
that

(7.14)

8

>

<

>

:

 (x0, y0) = a 2 G ,

 �1 @ 

@z
= Az ,  �1 @ 

@z
= Az .

Then we have:

Theorem 7.2. This map  : (⌦, g) ! (G, h) is biharmonic. Every biharmonic
map can be obtained in this way. (g := µ�2g0 and µ is a positive C1 function on
⌦).

To see biharmonic map:  : (S2, g0) ! (G, h), let us recall

Theorem 7.3 (Sacks and Uhlenbeck). Every harmonic map  : (R2, g) ! (G, h)
with finite energy can be uniquely extended to a harmonic map  ̃ : (S2, g0) ! (G, h).

Conversely, every harmonic map  ̃ : (S2, g0) ! (G, h) can be obtained in this
way.

We wish to obtain the following:

“Theorem 7.4” Every biharmonic map  : (R2, g) ! (G, h) with finite bienergy
can be uniquely extended to a biharmonic map  ̃ : (S2, g0) ! (G, h).
Conversely, every biharmonic map  ̃ : (S2, g0) ! (G, h) can be obtained in this
way.

The above works is based on our recent works (cf. [49]).
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8. Biharmonic maps into symmetric spaces

Now let us recall the famous work of Dorfmeister, Pedit and Wu ([9]) on harmonic
maps into symmetric spaces. This work gave a systematic scheme for constructing
all harmonic maps from a Riemann surface ⌃ into G/K.

We want to extend it to biharmonic maps. We first begin to set framework
of biharmonic maps into symmetric spaces. Let (M, g) be a compact Riemann-
ian manifold, (N,h) = (G/K, h), a Riemannian symmetric space with G-invariant
Riemannian metric h on G/K, and ⇡ : G ! G/K, the natural projection. Let
' : M ! G/K, a C1 map with a local lift  : M ! G, i.e., ' = ⇡ �  . Let ✓ be
the Maurer-Cartan form on G, i.e., ✓y(Zy) = Z, Z 2 g, y 2 G.

Let us consider a g-valued 1-form ↵ on M given by ↵ :=  ⇤✓, and, corresponding
to the Cartan decomposition g = k�m, decompose it as

↵ = ↵k + ↵m .

Then the tension field ⌧(') is given by

(8.1) t (x)�1⇤⌧(') = ��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)] ,

where {ei}m
i=1 is a local orthonormal frame field of (M, g) (dimM = m), and � is

the co-di↵erentiation. Then we have

Theorem 8.1. The bitension field ⌧2(') of ' : (M, g) ! (G/K, h) is given by

⌧2(') = �g

 

��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)]

!

+

+
m
X

s=1

""

��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)],↵m(es)

#

,↵m(es)

#

.

As a corollary, we have

Corollary 8.2. Let (G/K, h) be a Riemannian symmetric space, ' : (M, g) !
(G/K, h), a C1 map. Then

(1) ' is harmonic if and only if

(8.2) ��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)] = 0 .

(2) ' is biharmonic if and only if the following equation holds:

�g

 

��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)]

!

+

(8.3) +
m
X

s=1

""

��(↵m) +
m
X

i=1

[↵k(ei),↵m(ei)],↵m(es)

#

,↵m(es)

#

= 0 .

Conversely, any g valued 1-form ↵ = ↵k + ↵m satisfies the Maurer-Cartan equa-
tion: d↵+ (1/2) [↵ ^ ↵] = 0, i.e.,

(8.4)

8

<

:

d↵k +
1
2
[↵k ^ ↵k] +

1
2
[↵m ^ ↵m] = 0 ,

d↵m + [↵k ^ ↵m] = 0 .
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Then there exists a C1 map  : M ! G such that ↵ =  ⇤✓.

Therefore, every g-valued 1-form ↵ = ↵k+↵m which satisfies (8.3) and (8.4), there
exists a C1 map  : M ! G such that ↵ =  ⇤✓, and ' := ⇡� : (M, g) ! (G/K, h)
is a biharmonic map.

The lift  is horizontal if

(8.5)  ⇤(TxM) ⇢ H (x) := {Y (x) |Y 2 m} (8 x 2 M)

which is equivalent to ↵k ⌘ 0.

Now, let ' : R ! G/K be a C1 curve in G/K, and  : R ! G, the lift, i.e.,
' = ⇡ �  . The 1-form ↵ :=  ⇤✓ =  �1d can be written as ↵ = F (t)dt, where
F (t) is a g-valued function in t. Write as

F (t) = Fk(t) + Fm(t) .

Then ' is harmonic if and only if

(8.6) F 0m(t) + [Fk(t), Fm(t)] = 0 .

And ' is biharmonic if and only if

(8.7) �(F 0m(t) + [Fk(t), Fm(t)])00 + [[F 0m(t) + [Fk(t), Fm(t)], Fm], Fm] = 0 .

Now we treat with the case of harmonic curves: Consider the horizontal lift:
Fk ⌘ 0. Then F 0m = 0, i.e., Fm = X 2 m (constant). Thus  (t) = x exp(tX) and
'(t) = x exp(tX) · o, where X 2 m and o = {K} 2 G/K.

Next, we treat with the case of biharmonic curves: Consider the horizontal lift:
Fk ⌘ 0. Then

(8.8) �F 000m (t) + [[F 0m(t), Fm(t)], Fm(t)] = 0 .

In particular, in the case of the Euclidean space Rn, (8.7) is �Fm
000 = 0, so we

have

(8.9) Fm(t) = at2 + bt + c (a, b, c 2 m = Rn, constants) .

We have

(8.10)  (t) = x exp(dt) = (Id, dt) 2 EM(n) ,

(8.11) '(t) =  (t) · o = x dt ,

where
dt :=

1
3

at3 +
1
2

bt2 + ct 2 Rn , x 2 EM(n) .

Now we consider biharmonic curves in the unit sphere. Let us recall that the
unit sphere Sn can be realized as follows. Let G = SO(n + 1), K = SO(n), and
g = k�m,

m =

8

>

<

>

:

✓

0 �tu
u O

◆

| u =

0

B

@

u1

...
un

1

C

A

2 Rn

9

>

=

>

;

.

The equations (8.7) is

(8.12) �u000 + hu0, uiu� hu, uiu0 = 0 .

One of solutions of (8.12) is given by

(8.13) (u1, · · · , un) = (0, · · · , 0, at2 + bt + c, 0, · · · , 0) .
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Furthermore

'i(t) = x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

� sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(x 2 SO(n + 1), i = 1, · · · , n)

are biharmonic curves in Sn. In particular, 'i are harmonic if and only if a = b = 0.

To solve the equation (8.12) in the case S2, let take a curve p(s) in R2 with arc
length parameter s. Then

p0 = e1 , e01 =  e2 , e02 = � e1 .

Substituting this into (8.12), we have 3 = , i.e.,  = 0, ±1.
Then we have

Case 1:  = 0. In this case, we have a great circle:

(8.14) '(t) = x · t(cos(t c),
a

c
sin(t c),

b

c
sin(t c)) ,

where c :=
p

a2 + b2, a, b 2 R and x 2 SO(3).

Case 2:  = 1. In this case, we have

(8.15) Fm(t) =

0

@

0 sin t � cos t
� sin t 0 0
cos t 0 0

1

A .

Case 3:  = �1. In this case, we have

(8.16) Fm(t) =

0

@

0 sin t cos t
� sin t 0 0
� cos t 0 0

1

A .

Now we consider biharmonic curves in CPn.
Recall that the complex projective space CPn can be realized as follows: let

G = SU(n + 1), K = S(U(1)⇥ U(n)), and g = k�m,

m =
⇢✓

0 �tz
z 0

◆

| z = t(z1, · · · , zn) 2 Cn

�

.

The equations (8.12) is that:

(8.17) �z000 + 2hz, z0iz � hz0, ziz � hz, ziz0 = 0 .

Solutions of (8.17) are

(8.18) (z1, · · · , zn) = (0, · · · , 0, at2 + bt + c, 0, · · · , 0), or

(8.19) (z1, · · · , zn) = (0, · · · , 0,
p
�1(at2 + bt + c), 0, · · · , 0) .
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Then biharmonic curves in Cn are given by

(8.20) '1
i (t) = x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

� sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, '2
i (t) = x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0p

�1 sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

where x 2 SU(n + 1), i = 1, · · · , n, are biharmonic curves in CPn, and '1
i (resp.

'2
i ) are harmonic if and only if a = b = 0.
Next, we treat with biharmonic curves in HPn. In HPn, one can also obtain

biharmonic curves:

x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

� sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

i sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

j sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos dt

0
...
0

k sin dt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(x 2 Sp(n + 1)), are all biharmonic curves in HPn, and they are harmonic if and
only if a = b = 0.

Now, let us consider the case dim M = 2. From now on, we consider biharmonic
maps of (R2, g0) into a Riemannian symmetric space (G/K, h) with g0 = dx2 +dy2.

Let ' : R2 ! (G/K, h) be a C1 map,  : R2 ! G, a local lift, and ↵ =  ⇤✓.
Let ↵k = R dx+S dy, ↵m = P dx+Q dy, where R, S, (resp. P , and Q) are k-valued
(resp. m-valued) functions on R2.

Then ' is harmonic if and only if

(8.21) Px + Qy + [R,P ] + [S, Q] = 0 ,

where Px = @P/@x, Qy = @Q/@y. Furthermore ' is biharmonic if and only if

�
⇢

@2

@x2
+

@2

@y2

�

(Px + Qy + [R,P ] + [S, Q])+

+[[Px + Qy + [R,P ] + [S, Q], P ], P ]+

(8.22) +[[Px + Qy + [R,P ] + [S, Q], Q], Q] = 0 .

In the case  is horizontal, i.e., ↵k ⌘ 0, R = S = 0, ' is biharmonic if and only
if

�Pxxx � Pxyy �Qxxy �Qyyy+

(8.23) +[[Px + Qy, P ], P ] + [[Px + Qy, Q], Q] = 0 .
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Furthermore, the integrability condition, i.e., d↵+ (1/2)[↵^↵] = 0 becomes the
following:

(8.24) �Ry + Sx + [R,S] + [P,Q] = 0 ,

(8.25) �Py + Qx + [R,Q] + [P, S] = 0 .

In the case  is horizontal,

(8.26) [P,Q] = 0 , and Py = Qx .

Thus, when  is horizontal, we only have to solve the following three equations:

(1) �Pxxx � Pxyy �Qxxy �Qyyy+

+[[Px + Qy, P ], P ] + [[Px + Qy, Q], Q] = 0 ,

(2) [P,Q] = 0 ,

(3) Py = Qx .

Now assume that [P,Q] = 0 and Py ⌘ 0 and Qx ⌘ 0, i.e., P (x, y) = P (x),
Q(x, y) = Q(y). Then (1) becomes

{�Pxxx + [[Px, P ], P ]}+ {�Qyyy + [[Qy, Q], Q]}+

(8.27) +[[Qy, P ], P ] + [[Px, Q], Q] = 0 .

Here,

(8.28) 0 =
@

@x
[[P,Q], Q] = [[Px, Q], Q] ,

and

(8.29) 0 =
@

@y
[[Q, P ], P ] = [[Qy, P ], P ] .

Thus (1) becomes

(8.30) {�Pxxx + [[Px, P ], P ]}+ {�Qyyy + [[Qy, Q], Q]} = 0 .

Then we have

Theorem 8.3. Let (G/K, h) be a Riemannian symmetric space of rank � 2, g =
k � m, the Cartan decomposition, m � a, a maximal abelian subalgebra of g, and
{X,Y } ⇢ a. Let P (x) := (a1x2 + b1x + c1)X, Q(y) := (a2y2 + b2y + c2), where ai,
bi, and ci (i = 1, 2) are constants. Then

(1)  (x, y) := x0 exp(d1
x X + d2

y Y ) satisfies  �1d = ↵ = Pdx + Qdy.
(2) Let '(x, y) := x0 exp(d1

x X + d2
y Y ) · o. Then ' : (R2, g0) ! (G/K, h) is

biharmonic (where x0 2 G, di
t = (ai/3)t3 + (bi/2)t2 + cit).

(3) ' is harmonic if and only if ai = bi = 0 (i = 1, 2).
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Finally, we give an example.

Example (The case (Sn, h)). Let

(8.31) 'i(x, y) = x ·

0

B

B

B

B

B

B

B

B

B

B

B

B

@

cos(d1
x + d2

y)
0
...
0

� sin(d1
x + d2

y)
0
...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(x 2 SO(n + 1)) .

Then 'i are biharmonic maps, and 'i are harmonic if and only if ai = bi = 0. For
the projective spaces, one can get the similar results which are omitted. The above
works are due to the recent one (cf. [50]).

9. Chen, Caddeo, Montaldo, Piu and Oniciuc’s conjecture

Let us recall again the following famous conjecture which has been open until
now ([7], [8]):

• (The B-Y. Chen’s conjecture) Any biharmonic submanifold of the Euclidean
space is harmonic.

• (The generalized B-Y. Chen’s conjecture) Every immersion into a Rie-
mannian manifold with nonpositive curvature which is biharmonic is har-
monic.

Partial answers were given by several authors (see [8]), and a negative answer to
the generalized B-Y. Chen’s conjecture was given by Y. Ou and L. Tang (cf. [39]):

There exist biharmonic, but not minimal hypersurfaces (which are incomplete
Riemannian manifolds) into the 5-dimensional space with strictly negative sectional
curvature.

On the other hand, B-Y. Chen’s conjecture and the generalized B-Y. Chen’s
conjecture are true under certain additional conditions. Indeed, our first answer to
the conjecture is the following ([17]):

Theorem 9.1 ([17]). Assume that (M, g) is complete, and
�

�RiemM
�

�  C, and
RiemN  0. Let ' : (M, g) ! (N, h) be a biharmonic map whose tension field ⌧(')
satisfies

k⌧(')k 2 L2(M) and kr⌧(')k 2 L2(M) .

Then ' : (M, g) ! (N,h) is harmonic.

Recently, Akutagawa and Maeta obtained ([1]) a very striking result:

Theorem 9.2 (Akutagawa and Maeta, [1]). B-Y. Chen’s conjecture is true for a
proper isometric immersion into the Euclidean space. Namely, let ' : (M, g) !
(Rn, g0) be an isometric immersion which is proper, i.e., '�1(K) is compact for
every compact subset K in Rn. Then if ' : (M, g) ! (Rn, g0) is biharmonic, then
it is minimal.

Our recent results are as follows ([33], [34], [35]).
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Theorem 9.3 (N. Nakauchi and H. Urakawa, [33]). Assume that ' : (Mm, g) !
(N,h) is a biharmonic isometric immersion and dim M = m = dim N � 1. Let
H := (1/m)TrgA, the mean curvature, where A is the shape operator.

If RicN  0, (M, g) is complete, and
R

M
H2 vg < 1, then, H = 0, i.e., ' :

(M, g) ! (N,h) is minimal.

Furthermore, for biharmonic isometric immersions, we have

Theorem 9.4 (N. Nakauchi and H. Urakawa, [34]). Let ' : (Mm, g) ! (N, h)
be a biharmonic isometric immersion, and ⌘ := (1/m)TrgB, the mean curvature
vector field along ', rN

'⇤X'⇤Y = '⇤(rXY ) + B(X,Y ), X, Y 2 X(M). Assume
that (N,h) is non-positive curvature, (M, g) is complete and

R

M
|⌘|2 vg < 1. Then

⌘ = 0, i.e., ' is minimal.

For a biharmonic maps, we have

Theorem 9.5 (N. Nakauchi and H. Urakawa, [35]). Assume that (M, g) is complete
and (N,h) has non-positive curvature. Then

(1) any biharmonic map with finite energy E(') < 1 and finite bienergy
E2(') < 1 must be harmonic.

(2) Assume that Vol(M, g) = 1. Then any biharmonic map with finite bienergy
E2(') < 1 must be harmonic.

Notice that Theorem 9.5 implies Theorem 9.4 Indeed, assume that ' : (M, g) !
(N,h) is a biharmonic isometric immersion, (M, g) complete,

R

M
|⌘|2 vg < 1, and

RN  0. Then since ⌧(') = (1/m) ⌘ (m = dim M),

E2(') =
1

2m2

Z

M

|⌘|2 vg < 1 and E(') =
1
2

Z

M

|d'|2 vg =
m

2
Vol(M, g) .

(1) If Vol(M, g) < 1, (1) of Theorem 9.5 implies that ' is minimal.
(2) If Vol(M, g) = 1, (2) of Theorem 9.5 implies also that ' is minimal.

⇤
We have their applications to horizontally conformal submersions.
Here, recall that a submersion ' : (Mm, g) ! (Nn, h) (m > n � 2) is a horizontal

conformal submersion if there exist the orthogonal direct sum: TxM = Vx � Hx,
Vx = Ker(d'x) (vertical space), Hx horizontal space (x 2 M), and � 2 C1(M)
(dilation) such that

h(d'x(X), d'x(Y )) = �2(x) g(X, Y ) , X, Y 2 Hx .

Then the tension field ⌧(') is given by

(9.1) ⌧(') =
n� 2

2
�2 d'(gradH(

1
�2

))� (m� n)d'(Ĥ) ,

where Ĥ := (1/(m � n))H(
Pm

k=n+1re
k

ek), and ei is a local orthonormal frame
field on M .

Then let us recall

Theorem 9.6 (cf. Wang and Ou, [53]). For a horizontally conformal submersion
from a space form (Mm, g) of constant curvature into (N2, h), it is biharmonic if
and only if it is harmonic.

On the other hand, one of our theorems which is a corollary of Theorem 9.5, is
that (cf. [35]):
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Theorem 9.7. Assume that (Mm, g) (m > 2) is non-compact complete, (N2, h)
has non-positive curvature, � 2 L2(M) and � |Ĥ|g 2 L2(M). For a horizontally
conformal submersion ' : (Mm, g) ! (N2, h), it is biharmonic if and only if it is
harmonic.

Proof of Theorem 9.5. The proof of Theorem 9.5 is divided into four steps.
(First step). Take a cut-o↵ function � on M as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0  �(x)  1 ,

�(x) = 1 on Br(x0) ,

�(x) = 0 outside B2r(x0), and

|r�|  2
r

on M .

The bitension field of a map ' : (M, g) ! (N,h) is given by

⌧2(') = �(⌧('))�
m
X

i=1

RN (⌧('), d'(ei))d'(ei) .

For a biharmonic map ' : (M, g) ! (N,h), we have
Z

M

h�(⌧(')), ⌘2 ⌧(')i vg =

=
Z

M

⌘2
m
X

i=1

hRN (⌧('), d'(ei))d'(ei), ⌧(')i vg  0

since (N,h) has non-positive curvature.
Notice here that � = r⇤r, where r is the induced connection on �('�1TN).

(Second step). Thus we have

0 �
Z

M

h�(⌧(')), ⌘2 ⌧(')i vg =
Z

M

hr⌧('),r(⌘2 ⌧('))i =

=
Z

M

m
X

i=1

hre
i

⌧('),re
i

(⌘2 ⌧('))i vg =

=
Z

M

�

⌘2 hre
i

⌧('),re
i

⌧(')i+ ei(⌘2)hre
i

⌧('), ⌧(')i
 

=

=
Z

M

⌘2
�

�re
i

⌧(')
�

�

2
vg + 2

Z

M

h⌘re
i

⌧('), ei(⌘) ⌧(')i vg .

Thus, letting Vi := ⌘re
i

⌧('), Wi := ei(⌘) ⌧('),
Z

M

⌘2
�

�re
i

⌧(')
�

�

2
vg  �2

Z

M

h⌘re
i

⌧('), ei(⌘) ⌧(')i vg =

(9.2) = �2
Z

M

m
X

i=1

hVi, Wii vg .

Use Cauchy-Schwarz inequality in (9.2),

±2hVi, Wii  ✏ |Vi|2 +
1
✏
|Wi|2 (8 ✏ > 0) .



60 Hajime Urakawa

Then we have

�2
Z

M

m
X

i=1

hVi, Wii vg  ✏

Z

M

m
X

i=1

|Vi|2 vg +
1
✏

Z

M

m
X

i=1

|Wi|2 vg .

Therefore, we have, by putting ✏ = 1/2,
Z

M

⌘2
m
X

i=1

�

�re
i

⌧(')
�

�

2
vg 

1
2

Z

M

X

i

⌘2
�

�re
i

⌧(')
�

�

2
vg+

+2
Z

M

X

i

ei(⌘)2 |⌧(')|2 vg .

Thus we have
Z

M

⌘2
X

i

�

�re
i

⌧(')
�

�

2
vg  4

Z

M

|r⌘|2 |⌧(')|2 vg 

(9.3)  16
r2

Z

M

|⌧(')|2 vg .

(Third step). Since (M, g) is complete and non-compact, we can tend r to infinity.
But

E2(') =
1
2

Z

M

|⌧(')|2 vg < 1 ,

so that the right hand side of (⇤) goes to zero if r !1. We obtain

(9.4)
Z

M

m
X

i=1

�

�r⌧(')
�

�

2
vg = 0 .

Thus we obtain, for every vector field X on M ,

(9.5) rX⌧(') = 0 .

Therefore |⌧(')| is constant, say c. Because, for all vector field X on M ,

X |⌧(r)|2 = 2 hrX⌧(r), ⌧(')i = 0 .

Thus, in the case that Vol(M, g) = 1, if we assume c 6= 0, we have

⌧2(') =
1
2

Z

M

|⌧(')|2 vg =
c2

2
Vol(M, g) = 1 ,

which is a contradiction. We have (2) of Theorem 9.5.

For (1), assume E(') < 1 and E2(') < 1. Define

↵(X) := hd'(X), ⌧(')i (X 2 X(M)) ,

Then we have
��↵ = ei(↵(ei))� ↵(re

i

ei) =
= ei hd'(ei), ⌧(')i � hd'(re

i

ei), ⌧(')i =

= hre
i

(d'(ei))� d'(re
i

ei), ⌧(')i+ hd'(ei),re
i

⌧(')i =

= h⌧('), ⌧(')i = |⌧(')|2 .

Thus we have
Z

M

|�↵| vg =
Z

M

|⌧(')|2 vg = 2E2(') < 1 .
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Furthermore we have
Z

M

|↵| =
Z

M

⇣

X

hd'(ei), ⌧(')i2
⌘1/2




Z

M

⇣

X

|d'(ei)|2 |⌧(')|2
⌘1/2

=

=
Z

M

|d'| |⌧(')| 
s

Z

M

|d'|2
s

Z

M

|⌧(')|2 .

The finiteness assumptions E(') = (1/2)
R

M
|d'| vg < 1 and also E2(') =

(1/2)
R

M
|⌧(')|2 vg < 1 imply that

Z

M

|�↵| vg < 1 and
Z

M

|↵| vg < 1 .

By Ga↵ney’ s theorem, since (M, g) is complete,

0 =
Z

M

(��↵) vg =
Z

M

|⌧(')|2 vg .

Namely, we obtain ⌧(') = 0, i.e., ' is harmonic.
⇤

10. Bubbling phenomena of harmonic maps and biharmonic maps

We treat with the totality of harmonic maps and/or biharmonic maps, that is,

“What is bubbling phenomena on harmonic maps and biharmonic maps?”

Let us recall the following results (cf. [37]): For any C > 0, let

F :=
⇢

' : (Mm, g) ! (Nn, h) smooth harmonic |
Z

M

|d'|m vg  C

�

.

Then F is causes a bubbling, a kind of compactness.
For any C > 0, let

F :=
⇢

' : (Mm, g) ! (Nn, h) smooth biharmonic |

Z

M

|d'|m vg  C and
Z

M

|⌧(')|2 vg  C

�

.

Then F is causes a bubbling, a kind of compactness.
More precisely, for a bubbling for harmonic maps, we have

Theorem 10.1. Let (M, g), (N, h) be compact Riemannian manifolds dim M � 3.
For any C > 0, let

F :=
⇢

' : (Mm, g) ! (Nn, h) smooth harmonic |
Z

M

|d'|m vg  C

�

.

Then for all {'i} 2 F , there exist S = {x1, · · · , x`} ⇢ M , and a harmonic map
'1 : (M \ S, g) ! (N,h) such that

(1) 'i
j

! '1 in the C1-topology on M \ S (j !1), and
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(2) the Radon measures |d'i
j

|m vg converges to a measure given by

|d'1|m vg +
X̀

k=1

ak �x
k

(j !1) .

Our bubbling of biharmonic maps is the following.

Theorem 10.2 (Bubbling). Let (M, g), (N, h) be compact Riemannian manifolds,
dim M � 3. For any C > 0, let

F := {' : (Mm, g) ! (Nn, h) smooth biharmonic |
Z

M

|d'|m vg  C and
Z

M

|⌧(')|2 vg  C

�

.

Then for all {'i} 2 F , there exist S = {x1, · · · , x`} ⇢ M , and a biharmonic map
'1 : (M \ S, g) ! (N,h) such that

(1) 'i
j

! '1 in the C1-topology on M \ S (j !1),
(2) Radon measure |d'i

j

|m vg converges to a measure

|d'1|m vg +
X

1k`
ak �x

k

(j !1) .

Outline of Proof of Bubbling Theorem. We need the following two propositions:

Proposition 10.3. Assume that the sect. curvature of (N, h) is bounded from
above by a positive constant C > 0: RN  C < 1. Then there exist ✏0 > 0 and
C 0 > 0 depending on C & (M, g), such that, for all biharmonic map ' 2 C1(M,N)
with

R

B
r

(x0)
|d'|m vg  ✏0, it holds that

(10.1) sup
B

r/2(x0)

|⌧(')|2  C 0

rm/2

Z

B
r

(x0)

|⌧(')|2 vg ,

where m := dim M .

Proposition 10.4 (The C1 estimate for biharmonic maps). Assume that (M, g)
is compact and RN  C < 1, m := dim M . Then there exist ✏1 > 0, ✏2 > 0
and C⇤ > 0 such that for all biharmonic map ' : (M, g) ! (N, h), with E2(') =
(1/2)

R

M
|⌧(')|2 vg < 1, and

(10.2)
Z

B
r

(x0)

|d'|m vg < ✏1 and

(10.3)
Z

B
r

(x0)

|⌧(')|m vg < ✏2 ,

then it holds that

(10.4) sup
B

r/2(x0)

|d'|+ sup
B

r/2(x0)

|⌧(')|  C⇤

r

h

✏1/m
1 + ✏1/m

2 + 1
i

.

Remark 10.5. By Propositions 10.3 and 10.4, we have the C1 estimate for a
biharmonic map with finite bienergy. The proofs of Propositions 10.3 and 10.4
need to use the Moser’s iteration technique.
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By using Propositions 10.3 and 10.4, we give a proof of Theorem 10.2.
Take for all {'i} 2 F , and ✏0 > 0 as in Proposition 10.3. Let us define a subset

S of M , as

(10.5) S := {x 2 M | lim inf
i!1

Z

B
r

(x)

|d'i|m vg � ✏0} .

Then it holds that S is a finite set. Because For for all subsets {x`; 1  `  k} in
S, choose r0 > 0 in such a way that Br0(xs) \ Br0(xt) = ; (s 6= t). Then it holds
that

k✏0 
X

1`k

Z

B
r0 (x

`

)

|d'i|m vg =
Z

S

k

`=1 B
r0 (x

`

)

|d'i|m vg 

(10.6) 
Z

M

|d'i|m vg  C < 1

for large i. Thus (10.6) implies that k  C/✏0. Therefore, we obtain that #S 
C/✏0 < 1.

⇤
Proof of Bubbling Theorem continued. We may assume by taking a subsequence

of {'i},

S = {x 2 M | lim sup
i!1

Z

B
r

(x)

|d'i|m vg � ✏0} .

Now, let take x 2 M \ S. Then

lim sup
i!1

Z

B
r

(x)

|d'i|m vg < ✏0 .

We have, by Proposition 10.3,

(10.7) sup
B

r/2(x)

|⌧('i)|2 
C

rm/2

Z

B
r

(x)

|⌧('i)|2 vg 
C2

rm/2
.

Thus we obtain
(C0): the C0-estimate on Br(x) of ⌧('i).
Then for a su�ciently small r > 0, we obtain

(10.8)
Z

B
r

(x)

|⌧('i)|m vg < ✏2 ,

where ✏2 > 0 is a positive constant in Proposition 10.4 after a long estimation.
We may take ✏0 < ✏2 which is a positive constant in Proposition 10.4. Then it

holds that

(10.9) sup
B

r/2(x)

|d'i|+ sup
B

r/2(x)

|⌧('i)| 
C⇤

r

h

✏1/m
1 + ✏1/m

2 + 1
i

.

Thus we obtain
(C1): the C1-estimate on Br(x) of 'i.

All the 'i are biharmonic, i.e.,

(10.10) �(⌧('i))�R(⌧('i)) = 0 () ��i = R(�i), ⌧('i) = �i .
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Here R(�i) :=
P

j
NR(�i, d'i(ej))d'i(ej) and |d'i(ej)| (1  j  m) are bounded

uniformly on i. So that, each �i are solutions of the linear equations with bounded
coe�cients uniformly on i.

By Ladyzhenskaya and Ural’tseva [21], p. 397, Theorem 3.1, we obtain

(C↵): the C↵-estimate on Br(x) of �i.

By the equation ⌧('i) = �i, 'i are solutions of the equations

(10.11) ⌧('i)� = �('i
�) +

X

gjk N��↵�('i)
@'i

↵

@xj

@'i
�

@xk
= �i

� ,

Namely,

(10.12) ⌧('i) = �'i + N�('i)(d'i, d'i) = �i .

Since |d'i| are bounded and one of two d'i can be regarded as coe�cients, 'i are
solutions of the linear equations with bounded coe�cients. By Ladyzhenskaya and
Ural’tseva [21], p. 399, Theorem 4.1, we obtain

(C1,↵): the C1,↵-estimate on Br(x) of 'i.

Thus we obtain that 'i are solutions of the linear equations with the C↵-
coe�cients d'i.

Due to the Schauder estimate, we have

(10.13) |'i|C2,↵(B
r

(x))  C(|'i|C0(B
r

(x)) + |�i|C↵(B
r

(x)))  C(C1 + C2) ,

due to |'i|C0(B
r

(x))  C1 and |�i|C↵(B
r

(x))  C2. Namely, we have

(C2,↵): the C2,↵-estimate on Br(x) of 'i.

Thus we have the C1-estimate on Br(x) of 'i uniformly on i. Therefore, we
obtain (1) of Theorem 10.2, i.e., there exist a subsequence {'i

j

} and a C1-map
'1 : M \ S ! N such that 'i

j

! '1 on Br(x) in C1-topology (j ! 1).
Therefore, '1 : (M \ S, g) ! (N, h) is biharmonic.

For (2), there exists a Radon measure µ such that the Radon measure |d'i
j

|m vg

! µ (weakly) (j !1). µ satisfies, for any Borel set A ⇢ M ,

µ(A) = sup {µ(K) | 8K ⇢ A (compact subset)} =

= inf {µ(O) | 8O � A (open subset)} .

Since 'i
j

! '1 on M \ S (C1-topology) (j ! 1), µ = |d'1|m vg on M \ S.
Since S = {x1, · · · , xk} (a finite set), it holds that

µ� |d'1|m vg =
k
X

`=1

a` �x
`

for some a` � 0 (constants).
⇤

The above is based on a joint work with N. Nakauchi ([37]).
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11. Biharmonic maps and symplectic geometry

In this section, our problem is:
What is a relation between biharmonic maps and

symplectic geometry?

One of main issues in symplectic geometry is the geometry of Lagrangian sub-
manifolds in a symplectic manifold. Then one can ask:

When are Lagrangian submanifolds biharmonic immersions into a symplectic
manifold? Take as a symplectic manifold, a Kähler manifold: When is its La-
grangian submanifold biharmonic immersion?

We begin symplectic setting for biharmonic maps.
Let (N, J, h) be a complex m-dimensional Kähler manifold, and consider a sym-

plectic form on N by !(X,Y ) := h(X,JY ), X,Y 2 X(N).
A real submanifold M in N of dimension m is called to be Lagrangian if the

immersion ' : M ! N satisfies that '⇤! ⌘ 0, i.e.,

hx(TxM,J(TxM)) = 0 (8x 2 M) .

Problem When is ' : (M, g) ! (N, J, h) biharmonic?
Here, g := '⇤h.
As examples of Lagrangian submanifolds, there is a real form of a Hermitian

manifold. Let (N, J, h) be a Hermitian manifold of dimC N = m, �, an anti-
holomorphic involutive isometry of (N, J, h), and M := Fix(�) = {x 2 N | �(x) =
x}, (called a real form). Let ! be a 2-form on N defined by !(X,Y ) := h(X, JY )
(X,Y 2 X(N)), and, an m-dimensional submanifold M is said to be Lagrangian in
(N, J, h) if !|M ⌘ 0. (d! 6⌘ 0, in general.) Then any real form is Lagrangian, and
for all x 2 M ,

TxN = TxM � J(TxM) and h(TxM,J(TxM)) = 0 .

Proposition 11.1. Let (N, J, h) be a Hermitian symmetric space of compact type.
Then any real form M of (N, J, h) is totally geodesic.

Then we have

Theorem 11.2. Let GC be a complex Lie group with a left invariant Riemannian
metric h. Then any real form G of GC is minimal in (GC, h).

Proof. The proof is clear since the second fundamental form of the inclusion
G ,! GC satisfies that

B(X,Y ) = �1
2

m
X

i=1

Jei(h(X, Y )) Jei ,

for all X, Y 2 X(G), where {ei} is a locally defined orthonormal frame on G
(dim G = m).

⇤
Now we consider biharmonic submanifolds. We first need the following theorem:

Theorem 11.3 (Maeta and Urakawa, [27]). Let ' : (M, g) ! (N, h), an isometric
immersion.Then it is biharmonic if and only if

(11.1) Trg(rAH) + Trg(Ar?• H(•))�
⇣

X

RN (H, ei)ei

⌘T

= 0 ,



66 Hajime Urakawa

(11.2) �?H + TrgB(AH(•), •)�
⇣

X

RN (H, ei)ei

⌘?
= 0 .

Here, B, A⇠ are the 2nd fundamental form, the shape operator for ', i.e., recall
that, for X,Y 2 X(M), ⇠ 2 �(TM?),

rN
XY = rXY + B(X,Y ) ,

hB(X, Y ), ⇠i = hA⇠X,Y i ,

rN
X⇠ = �A⇠X +r?X⇠ .

Then we have

Theorem 11.4 (Maeta and Urakawa, [27]). Let (N, J, h), a Kähler manifold, and
(M, g), a Lagrangian submanifold. Then it is biharmonic if and only if

Trg(rAH) + Trg(Ar?• H(•))�

(11.3) �
X

hTrg(r?e
i

B)� Trg(r?• B)(ei, •),Hi ei = 0 ,

�?H + TrgB(AH(•), •)+

+
X

RicN (JH, ei) Jei �
X

Ric(J H, ei)Jei�

(11.4) �J TrgAB(JH,•)(•) + m JAH(JH) = 0 .

where m = dim M and Ric, RicN are the Ricci tensors of (M, g), (N, h), respec-
tively.

In particular, we have

Theorem 11.5 (Maeta and Urakawa, [27]). Let (N, J, h) = Nm(4c) be the complex
space form of complex dimension m with constant holomorphic curvature 4c (< 0,
= 0, > 0), and, (M, g), a Lagrangian submanifold. Then it is biharmonic if and
only if

(11.5) Trg(rAH) + Trg(Ar?• H(•)) = 0 ,

(11.6) �?H + TrgB(AH(•), •)� (m + 3)cH = 0 .

Now recall that B.Y. Chen introduced the following two notions on a Lagrangian
submanifold M in a Kähler manifold N :

H-umbilic: M is called H-umbilic if M has a local orthonormal frame field {ei}
satisfying

B(e1, e1) = � Je1 , B(e1, ei) = µ Jei ,

B(ei, ei) = µ Je1 , B(ei, ej) = 0 (i 6= j) ,

where 2  i, j  m = dim M , B is the second fundamental form of M ,! N , and
�, µ are local functions on M .

PNMC: M has a parallel normalized mean curvature vector field ifr?(H/|H|) =
0.

Then based with the Sasahara’s works [42] ⇠ [45], and Inoguchi [18], we obtain
the following theorem ([27]):
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Theorem 11.6. Let ' : M ! (Nm(4c), J, h) be a Lagrangian H-umbilic PNMC
submanifold. Then it is biharmonic if and only if c = 1 and '(M) is congruent to
a submanifold of Pm(4) given by

⇡

 

s

µ2

1 + µ2
e�(i/µ)x ,

r

1
1 + µ2

eiµx y1, · · · ,

r

1
1 + µ2

eiµx ym

!

where x, yi 2 R with
Pm

i=1 yi
2 = 1. Here, ⇡ : S2m+1 ! Pm(4) is the Hopf fibering,

and µ = ±
q

(m + 5±
p

m2 + 6m + 25)/2m, (� = (µ2 � 1)/µ).

More recently, we study the Kähler cone manifolds. Then we have ([51]):

Theorem 11.7. Let ' : (Mm, g) ! (Nn, h) be a Legendrian submanifold of a
Sasaki manifold (n = 2m + 1), and ' : (C(M), g) ! (C(N), h), a Lagrangian cone
submanifold of a Kähler cone manifold with g = dr2 + r2g, h = dr2 + r2h. Then it
holds that

(1) ⌧(') = r2 ⌧('), and
(2) ⌧2(') = r4 ⌧2(').

Recall that

Theorem 11.8 (T. Sasahara’s recent works). Immersions ' into S2m+1(1),

'(x, y1, · · · , ym) =
p

2
�1

(e�i(x/µ), eiµx y1, · · · , eiµx ym) ,

where x, yi 2 R with
Pm

i=1 yi
2 = 1, are proper biharmonic Legendrian immersions.

Here, µ = ±1.

Then we obtain

Corollary 11.9. The corresponding embeddings ' : C(M) � {0} ! Cm+1 are
proper biharmonic embeddings into the standard complex space Cm+1 (m � 2).

This work is due to the recent paper on Sasaki manifolds and Kähler cone man-
ifolds, and biharmonic submanifolds ([51]).

12. The k-harmonic maps and the k-harmonic B-Y. Chen’s conjecture

Now, in this section, we study more general k-harmonic maps. The contents of
this section will be as follows:

hTable of contents of this sectioni
12.1 Introduction to k-harmonic maps, and the k-harmonic B-Y.

Chen’s conjecture.
12.2 The first variation formula of 3-harmonic maps.
12.3 The 3-harmonic maps into N(c) (c < 0).
12.4 The k-harmonic B-Y. Chen’s conjecture.
12.5 The k-harmonic maps into Rn.
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12.1. Introduction to k-harmonic maps and the k-harmonic B-Y. Chen’s
conjecture. J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, Regional

Conference Series in Math., 50 (1983), AMS.
They introduced the k-energy: for a C1 map of (M, g) into (N,h),

Ek(') =
1
2

Z

M

|(d + �)k '|2 vg .

Here, (d + �)k is k-times iteration, d'2A1('�1TN), d :Ap('�1TN)!Ap+1('�1TN)
is the exterior di↵erentiation with respect to the induced connection r from the
Levi-Civita connection rN of (N,h), and � is the co-di↵erentiation.

Definition 12.1. ' : (Mm, g) ! (N, h) is k-harmonic if

d

dt

�

�

�

�

t=0

Ek('t) = 0

for all C1 variations 't 2 C1(M,N) (�✏ < t < ✏) with '0 = '.

We would like to expect the first variation formula for all k � 3,

Theorem 12.2. There exists the k-tension field ⌧k(') 2 �('�1TN) such that

d

dt

�

�

�

�

t=0

Ek('t) = �
Z

M

hV, ⌧k(')i vg ,

where

Vx :=
d

dt

�

�

�

�

t=0

't(x) 2 T'(x)N (x 2 M) .

Let us recall the following conjecture (cf. [8]):

The k-harmonic B-Y. Chen’s conjecture: Let ' : (M, g) ,! (Rn, h0) be an
isometric immersion. Assume that ' is k-harmonic (k � 2). Then ' is minimal,
i.e., harmonic.

Here let us recall again ' : (M, g) ! (N,h) is harmonic if ⌧(') = 0, where the
tension field ⌧(') is defined by

⌧(') :=
m
X

i=1

(ere
i

d')(ei) =
m
X

i=1

�

re
i

d'(ei)� d'(re
i

ei)
 

=

=
m
X

i=1

n

rN
d'(e

i

)d'(ei)� d'(re
i

ei)
o

.

Then in this section, we will show our following results and also some related
topics:

(1) Due to a recent joint work of S. Maeta, N. Nakauchi and H. Urakawa (cf.
[26]), we obtain the first variation formula for the trienergy E3 (k = 3).
We show that the (k = 3)-harmonic B-Y. Chen’s conjecture is true for an
isometric immersion into Nn(c) (c < 0) under some L2-, L4-conditions.

(2) By a recent joint work of N. Nakauchi and H. Urakawa (cf. [36]), we
establish the first variation formula for the k-energy Ek for a C1 map
of (M, g) into the Euclidean space (Rn, h0). And then, we show that the
(k � 2)-harmonic B-Y. Chen’s conjecture is true under some L2-conditions.
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12.2. The first variation formula of 3-harmonic maps. For the first variation
formula for k = 3, we have

Theorem 12.3. Recall the definition of trienergy which is defined by

E3(') :=
1
2

Z

M

k(d + �)3'k2 vg (' 2 C1(M,N) .

Then the first variation formula for E3 holds:

d

dt

�

�

�

�

t=0

E3('t) = �
Z

M

h⌧3('), V ivg ,

where

(12.1) ⌧3(') := J(� ⌧('))�
m
X

j=1

RN (re
j

⌧('), ⌧(')) d'(ej) ,

(12.2) J(W ) := �W �
m
X

i=1

RN (W,d'(ei))d'(ei) ,

for W 2 �('�1TN).

Definition 12.4. ' : (M, g) ! (N, h) is triharmonic if ⌧3(') = 0.

For every C1 variation 't : (M, g) ! (N, h) (�✏ < t < ✏) with '0 = ', it holds
that

E3(') =
1
2

Z

M

|(d + �)3'| vg =
1
2

Z

M

|r ⌧(')|2 vg .

Because (d+�)2' = d(d')+�(d') = 0�⌧('), and (d+�)3' = d(�⌧(')) = �r ⌧('),
since d : �('�1TN) ! A1('�1TN) is the exterior di↵erentiation associated with
r.

Then we have

(12.3)
d

dt
E3('t) =

Z

M

hr @

@t

re
i

⌧('t),re
i

⌧('t)i vg .

Let F : M ⇥ (�✏, ✏) ! N be a C1 map defined by F (t, x) := 't(x), (x 2
M,�✏ < t < ✏), and 5, the Levi-Civita connection of (�✏, ✏)⇥M , 5, the induced
connection on F�1TN , the corresponding rough Laplacian

4V = �
m
X

i=1

n

5e
i

5e
i

V �5r
e

i

e
i

V
o

,

V 2 �(F�1TN), e5, the induced connection on T ⇤((�✏, ✏)⇥M)⌦F�1TN , and eR,
the corresponding curvature tensor. Then, by (12.3),

d

dt
E3('t) ==

Z

M

h5 @

@t

5e
i

⌧(F ),5e
i

⌧(F )i vg .

Lemma 12.5. For X 2 X(M),

5 @

@t

5X⌧(F )
�

�

�

t=0
= �rX �V +rX

�

RN (V, d'(ej))d'(ej)
�

+ RN (V, d'(X))⌧(') .
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Proof continued. By Lemma 12.5, we have

d

dt

�

�

�

�

t=0

E3('t) =
Z

M

m
X

i=1

h�re
i

(�V )+

+re
i

�

RN (V, d'(ej))d'(ej)
�

+

(12.4) +RN (V, d'(ei))⌧('),re
i

(⌧('))i vg .

Integrating by parts,

d

dt

�

�

�

�

t=0

E3('t) =
Z

M

8

<

:

hV,��(�⌧('))i+
m
X

j=1

hRN (V, d'(ej))d'(ej),�⌧(')i+

(12.5) +
m
X

j=1

hRN (V, d'(ej))⌧('),re
j

⌧(')i

9

=

;

vg .

Next, by hRN (v3, v4)v2, v1i = hRN (v1, v2)v4, v3i,
d

dt

�

�

�

�

t=0

E3('t) =
Z

M

⌦

V,��(�⌧('))+

+
m
X

j=1

RN (�⌧('), d'(ej))d'(ej)+

(12.6) +
m
X

j=1

RN (re
j

⌧('), ⌧('))d'(ej)
↵

vg .

Finally, we obtain
d

dt

�

�

�

�

t=0

E3('t) = �
Z

M

hV, ⌧3(')i vg .

⇤
The proof of Lemma 12.5 goes as follows: Recall that

5 @

@t

5X⌧(F ) = 5X(5 @

@t

⌧(F )) + RN (dF (
@

@t
), dF (X))⌧(F ) =

= 5X

⇢

�4dF (
@

@t
) + RN (dF (

@

@t
), dF (ei))dF (ei)

�

+

(12.7) +RN (dF (
@

@t
), dF (X))⌧(F ) .

Putting t = 0 in the equality (12.6), we have Lemma 12.5.

We have to give a proof of the following equality in (12.7):

(12.8) 5 @

@t

⌧(F ) = �4dF (
@

@t
) + RN (dF (

@

@t
), dF (ei))dF (ei) .

Indeed, we have
5 @

@t

⌧(F ) = 5 @

@t

⇣

(e5e
i

dF )(ei)
⌘

=

=
⇣

e5 @

@t

e5e
i

dF
⌘

(ei) +
⇣

e5e
i

dF
⌘

(r @

@t

ei) =
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(12.9) =
✓

e5e
i

e5 @

@t

dF + e5[ @

@t

, e
i

]dF + eR(
@

@t
, ei)dF

◆

(ei) .

By (12.9), 5@/@t⌧(F ) can be given as follows:

5 @

@t

⌧(F ) = e5e
i

⇣

(e5 @

@t

dF )(ei)
⌘

� (e5 @

@t

dF )(re
i

ei)+

+RN (dF (
@

@t
), dF (ei)) dF (ei) =

= e5e
i

✓

(e5e
i

dF )(
@

@t
)
◆

� (e5r
e

i

e
i

dF )(
@

@t
)+

(12.10) +RN (dF (
@

@t
), dF (ei)) dF (ei) .

Then (12.10) gives

5 @

@t

⌧(F ) = e5e
i

✓

(e5e
i

dF )(
@

@t
)
◆

� (e5r
e

i

e
i

dF )(
@

@t
)+

+RN (dF (
@

@t
), dF (ei)) dF (ei) =

= (e5e
i

e5e
i

dF )(
@

@t
) + ( e5e

i

dF )(ere
i

@

@t
)� (e5r

e

i

e
i

dF )(
@

@t
)+

+RN (dF (
@

@t
), dF (ei)) dF (ei) =

= �4 dF (
@

@t
) + RN (dF (

@

@t
), dF (ei))dF (ei) .

12.3. The 3-harmonic maps into Nn(c) (c < 0). Then we obtain

Theorem 12.6 (cf. S. Maeta, N. Nakauchi and H. Urakawa [26]). Let ' be an
isometric immersion of a complete Riemannian manifold (M, g) into the space form
Nn(c) (c < 0). If ' is 3-harmonic, and

Z

M

|�⌧(')|2 vg < 1 and
Z

M

|⌧(')|4 vg < 1 ,

then ' : (M, g) ! Nn(c) is minimal.

Lemma 12.7. Let ' : (M, g) ! Nn(c) (c < 0) be an isometric immersion. Then

⌧3(') = �(� ⌧('))�RN (�⌧('), d'(ej))d'(ej)�
�c h(⌧('), ⌧(')) ⌧(') .

To prove Lemma 12.7, we only have to show:

RN (re
j

⌧('), ⌧(')) d'(ej) = c h(⌧('), ⌧(')) ⌧(') .

Since RN (X,Y )Z = c {h(Y, Z)X � h(X, Z)Y }, the left hand side is equal to

c
�

h(⌧('), d'(ej))re
j

⌧(')� h(re
j

⌧('), d'(ej)) ⌧(')
 

.

Then, since h(⌧('), d'(ej)) = 0 for all j = 1, · · · , m, and

h(re
j

⌧('), d'(ej)) =

= ej(h(⌧('), d'(ej)))� h(⌧('),re
j

(d'(ej))) =
= �h(⌧('), ⌧(')) + d'(re

j

ej) =
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= h(⌧('), ⌧(')) .

⇤

12.4. The k-harmonic B-Y. Chen’s conjecture. The k-energy is obtained as
follows. For a C1 map ' : (M, g) ! (Rn, h0),

Ek(') :=
1
2

Z

M

|(d + �)k '|2 vg =

=

8

>

>

>

>

>

<

>

>

>

>

>

:

1
2

Z

M

�

�� · · ·�
| {z }

`�1

⌧(')
�

�

2
vg =

1
2

Z

M

�

�W `
'

�

�

2
vg , (k = 2`) ,

1
2

Z

M

�

�r(� · · ·�
| {z }

`�1

⌧('))
�

�

2
vg =

1
2

Z

M

|rW `
'|2 vg , (k = 2`+ 1) ,

where we put W `
' := � · · ·�

| {z }

`�1

⌧(') (` � 1), W 0
' := '.

Then we have

Theorem 12.8 (The first variational formula). Let ' be a C1 map of (M, g) into
(Rn, h0). Then

(12.11)
d

dt

�

�

�

�

t=0

Ek('t) = �
Z

M

hV, ⌧k(')i vg , (k = 1, 2, 3, · · · ) ,

for every variation vector field

V (x) =
d

dt

�

�

�

�

t=0

't(x) 2 T'(x)N (x 2 M) .

The k-tension field ⌧k(') is given by

(12.12) ⌧k(') = J(W k�1
' ) = �(W k�1

' ) = � · · ·�
| {z }

k�1

⌧(') ,

where W k
' := � · · ·�

| {z }

k�1

⌧(') for k � 1. Furthermore ⌧1(') = ⌧(') (k = 1). Therefore

' is k-harmonic if W k
' = 0.

Then we obtain

Theorem 12.9. Let ' be a k-harmonic map of a complete manifold (M, g) into
(Rn, h0). Assume that

(1) Ej(') < 1 for all j = 2, 4, · · · , 2k � 2,
(2) Vol(M, g) = 1 or Ej(') < 1 for all j = 1, 3, · · · , 2k � 3.

Then ' is harmonic.

Remark 12.10. The condition (1) in Theorem 12.9, is equivalent to
Z

M

|W `
'|2 vg =

Z

M

�

�� · · ·�
| {z }

`�1

⌧(')
�

�

2
vg < 1

for all 1  `  k � 1.
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The condition (2) in Theorem 12.9, is equivalent to

Vol(M, g) = 1 or
Z

M

|rW `
'|2 vg =

Z

M

�

�r� · · ·�
| {z }

`�1

⌧(')
�

�

2
vg < 1

for all 0  `  k � 2.

We can restate Theorem 12.9 as

Theorem 12.11. Let ' be a k-harmonic map of a complete manifold (M, g) into
(Rn, h0).

(1) In the case that Vol(M, g) < 1, assume that Ej(') < 1 for all j =
1, 2, · · · , 2k � 2.

(2) In the case that Vol(M, g) = 1, assume that Ej(') < 1 for all j =
2, 4, · · · , 2k � 2.

Then ' is harmonic.

Let us prepare Theorem 12.11 with the previous results on bi-harmonic maps as
follows:

Theorem 12.12 (cf. [35]). Let ' be a 2-harmonic map of a complete manifold
(M, g) into (N,h) with RN  0. Assume that (1) in case of Vol(M, g) < 1,
Ej(') < 1 (j = 1, 2), or (2) in case of Vol(M, g) = 1, E2(') < 1. Then ' is
harmonic.

To prove Theorem 12.11, we need

Lemma 12.13 (Key Lemma (the iteration method)). Let ' be a C1 map from a
complete manifold (M, g) into any Riemannian manifold (N,h). Assume that there
exists k � 2 such that W k

' = 0, i.e. � · · ·�
| {z }

k�1

⌧(') = 0, and

8

>

>

>

>

<

>

>

>

>

:

(1)
Z

M

|W k�1
' |2 vg < 1 , and

(2) (a)
Z

M

|rW k�2
' |2 vg < 1 or (b) Vol(M, g) = 1 .

Then we have W k�1
' = 0, i.e. � · · ·�

| {z }

k�2

⌧(') = 0.

Proof of Theorem 12.11. Let ' : (M, g) ! (Rn, h0) be k-harmonic, i.e. W k
' = 0

(k � 2), and assume that the conditions (1) and (2) in Theorem 12.11 hold. By
applying Key Lemma 12.13, the iteration works, and we have

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

W k�1
' = 0 ,

W k�2
' = 0 ,

· · · · · ·

⌧(') = W 1
' = 0 .

⇤
The proof of Key Lemma 12.13 goes as follows.
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(First step). For a fixed x0 2 M and 0 < r < 1, take a cut-o↵ function ⌘ on M :
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0  ⌘(x)  1 (x 2 M) ,

⌘(x) = 1 (x 2 Br(x0) := {x 2 M : d(x, x0) < r}) ,

⌘(x) = 0 (x 62 B2r(x0)) ,

|r⌘|  2
r

(x 2 M) .

(Second step). Assume that W k
' = �W k�1

' = 0.
Our aim is to show W k�1

' = 0.

0 =
Z

M

h⌘2 W k�1
' ,�W k�1

' i vg = (by �W k�1
' = 0)

=
Z

M

hre
i

(⌘2 W k�1
' ),re

i

W k�1
' i vg =

(12.13) =
Z

M

⌘2|re
i

W k�1
' |2vg + 2

Z

M

⌘ ei(⌘)hW k�1
' ,re

i

W k�1
' ivg .

Therefore, by virtue of (12.13), we have

(12.14)
Z

M

⌘2
m
X

i=1

�

�re
i

W k�1
'

�

�

2
vg = �2

Z

M

m
X

i=1

hSi, Tii vg ,

where Si := ⌘re
i

W k�1
' , and Ti := ei(⌘) W k�1

' .
Since 0  |p✏Si ± (1/

p
✏)Ti|2, we have ±2hSi, Tii  ✏ |Si|2 + (1/✏) |Ti|2 for all

✏ > 0. Thus we have

�2
Z

M

m
X

i=1

hSi, Tii vg  ✏

Z

M

m
X

i=1

|Si|2 vg +
1
✏

Z

M

m
X

i=1

|Ti|2 vg .

So by putting ✏ = 1/2,

(12.15)

Z

M

⌘2
m
X

i=1

�

�re
i

W k�1
'

�

�

2
vg 

 1
2

Z

M

⌘2|re
i

W k�1
' |2vg + 2

Z

M

ei(⌘)2|W k�1
' |2vg .

(Third step). By (12.14) and (12.15), we obtain
Z

M

⌘2
m
X

i=1

|re
i

W k�1
' |2 vg  4

Z

M

|r⌘|2 |W k�1
' |2 vg 

(12.16)  16
r2

Z

M

|W k�1
' |2 vg .

By the last inequality in (12.16), we have

(12.17)
Z

B
r

(x0)

|rW k�1
' |2 vg 

16
r2

Z

M

|W k�1
' |2 vg .
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Since (M, g) is complete, Br(x0) tends to M as r !1. By the assumption (1)
R

M
|W k�1

' |2 vg < 1, the right hand side tends to zero if r !1. Thus we obtain

(12.18)
Z

M

|rW k�1
' |2 vg = 0 ,

Thus we obtain

(12.19) rW k�1
' = 0 (everywhere on M) .

Since ei |W k�1
' |2 = 2hre

i

W k�1
' , W k�1

' i = 0 by (12.19),

(12.20) |W k�1
' |2 is a constant on M, say C0 .

(Fourth step). (a) In the case of Vol(M, g) = 1, by the condition in (1):
R

M
|W k�1

' |2 vg < 1, we have

(12.21) 1 >

Z

M

|W k�1
' |2 vg = C0 Vol(M, g) .

Thus, by Vol(M, g) = 1, C0 = 0, i.e. W k�1
' = 0.

(b) In the case
R

M
|rW k�2

' |2 vg < 1, let us define ↵ 2 A1(M) by ↵(X) :=
hW k�1

' ,rXW k�2
' i (X 2 X(M)). Then we will obtain that

(12.22)

8

>

>

>

<

>

>

>

:

(i) div(↵) = �|W k�1
' |2 , so

Z

M

|div(↵)| vg < 1 ,

(ii)
Z

M

|↵| vg < 1

which we will give a proof. Then we can apply Ga↵ney’s theorem, and then we
have 0 =

R

M
div(↵)vg = �

R

M
|W k�1

' |2vg, which implies that W k�1
' = 0.

⇤
For the proof of (12.22) (i):

div(↵) =
m
X

i=1

(re
i

↵) (ei) =
m
X

i=1

{ei(↵(ei))� ↵(re
i

ei)} =

= ei

�

hW k�1
' ,re

i

W k�2
' i

�

� hW k�1
' ,rr

e

i

e
i

W k�2
' i =

= hre
i

W k�1
' ,re

i

W k�2
' i+ hW k�1

' ,re
i

re
i

W k�2
' i�

�hW k�1
' ,rr

e

i

e
i

W k�2
' i =

= hW k�1
' ,��W k�2

' i = �hW k�1
' , W k�1

' i = �|W k�1
' |2 .

To see (ii)
R

M
|↵| vg < 1, we have

Z

M

|↵| vg =
Z

M

|hW k�1
' ,rW k�2

' i| vg 


✓

Z

M

|W k�1
' |2vg

◆1/2 ✓Z

M

|rW k�2
' |2vg

◆1/2

< 1 ,

by our assumptions that
R

M
|W k�1

' |2vg < 1 and also
R

M
|rW k�2

' |2vg < 1. We
obtain Key Lemma 12.13.

⇤
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12.5. The k-harmonic maps into Rn. We shall get the k-tension field for a C1

map into (Rn, h0).

Recall, for a C1 map of (M, g) into (N,h),

(12.23) Ek(') =
1
2

Z

M

|(d + �)k'|2 vg (k � 1) .

Calculate (d + �)k'.
k = 1, (d + �)' = d'.
k = 2, (d + �)2' = d2'+ �d' = �d = �⌧(') since

(12.24) d(d')(X,Y ) = rX(d'(Y ))�rY (d'(X))� d'([X,Y ]) = 0 ,

due to Pages 5 and 6 in J. Eells and L. Lemaire, Selected Topics in Harmonic Maps,
1983, AMS.

For k = 3, we have

(d + �)3' = d�d' = �d⌧(')) = �r⌧(') .

For k = 4,
(d + �)4' = (d + �)(d�d') = dd�d'+ �d�d' =

(12.25) = �dd⌧(')� �d⌧(') = Rr ⌦ ⌧(')��⌧(') .

For k � 5, We have no idea to calculate (d+ �)k, in general. But we can proceed
more in the case (N,h) = (Rn, h0). We need the following theorem whose proof
will be given later.

Theorem 12.14. For a C1 map ' : (M, g) ! (Rn, h0), Rr = 0.

Thus, for k = 4, we have

(12.26) (d + �)4' = �d�d' = ��⌧(') .

Furthermore, for every k � 1, we have

(d + �)k' =

8

>

>

<

>

>

:

(�d) · · · (�d)
| {z }

`

' , k = 2`, ` = 1, 2, · · · ,

d (�d) · · · (�d)
| {z }

`

' , k = 2`+ 1, ` = 0, 1, · · · .

The proof is an induction on k.
For k = 2` (` = 1, 2, · · · ),

(12.27) (d + �)k+1' = (d + �)(d + �)k' = d (�d) · · · (�d)
| {z }

`

' .

Because � (�d) · · · (�d)
| {z }

`

' = 0, since (�d) · · · (�d)
| {z }

`

' 2 �('�1TN).

For k = 2`+ 1 (` = 1, 2, · · · ),
(d + �)k+1' = (d + �)(d + �)k' = (d + �)d (�d) · · · (�d)

| {z }

`

' =

(12.28) = d2 (�d) · · · (�d)
| {z }

`

'+ (�d) · · · (�d)
| {z }

`+1

' = (�d) · · · (�d)
| {z }

`+1

' ,



Geometry of harmonic maps and biharmonic maps 77

d2V = Rr ⌦ V = 0⌦ V = 0, where V = (�d) · · · (�d)
| {z }

`

' 2 �('�1TN).

⇤
Next notice that

(12.29)

8

>

>

>

<

>

>

>

:

�d' = �⌧(') =: V 2 �('�1TN) ,

(�d) · · · (�d)
| {z }

`�1

V = � · · ·�
| {z }

`�1

V

because

� dV = �
m
X

i=1

�

re
i

((dV )(ei))� dV (re
i

ei)
 

=

= �
�

re
i

�

re
i

V
�

�rr
e

i

e
i

V
 

= �V 2 �('�1TN .

Therefore we obtain

(12.30)

8

>

>

>

>

<

>

>

>

>

:

(�d) · · · (�d)
| {z }

`

' = (�d) · · · (�d)
| {z }

`�1

(�⌧(')) = �� · · ·�
| {z }

`�1

⌧(') ,

d (�d) · · · (�d)
| {z }

`

' = �r(� · · ·�
| {z }

`�1

⌧(')) .

Thus we have

Theorem 12.15. For a C1 map of (M, g) into (Rn, h0), it holds that

(12.31)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

E2`(') =
1
2

Z

M

�

�� · · ·�
| {z }

`�1

⌧(')
�

�

2
vg (` = 1, 2, · · · ) ,

E2`+1(') =
1
2

Z

M

�

�r(� · · ·�
| {z }

`�1

⌧('))
�

�

2
vg (` = 1, 2, · · · ) .

We remark that, for k = 1 (` = 0), E1(') = (1/2)
R

M
|d'|2 vg since

d (�d) · · · (�d)
| {z }

`

' = d'.

Then we obtain the first variation formula:

Theorem 12.16 (The first variation formula). Let k = 2, 3, · · · , and ' be a C1

map of (M, g) into (Rn, h0). Then it holds that

(12.32)
d

dt

�

�

�

�

t=0

Ek('t) = �
Z

M

h⌧k('), V i vg ,

where the k-tension field ⌧k(') is given as

(12.33) ⌧k(') = �(W k�1
' ) = � � · · ·�

| {z }

k�2

⌧(') = � · · ·�
| {z }

k�1

⌧(') .

Thus, for k = 1, 2, · · · , ' is k-harmonic if and only if

(12.34) ⌧k(') = �(W k�1
' ) = � � · · ·�

| {z }

k�2

⌧(') = � · · ·�
| {z }

k�1

⌧(') = 0 .
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The proof of Theorem 12.16 goes as follows.
Let ' : (M, g) ! (N,h) = Rn, h0), a C1 map, and 't (✏ < t < ✏), a C1

variation of ' with '0 = ', and consider a C1 map F ,

F : (�✏, ✏)⇥M 3 (t, x) 7! F (t, x) := 't(x) 2 N .

Recall first the following notation. Let us take a Riemannian metric dt2 + g on
(�✏, ✏) ⇥M , and let 5, its Levi-Civita connection, 5, the induced connection on
F�1TN , and e5, the induced connection on T ⇤((�✏, ✏)⇥M)⌦F�1TN , respectively.
If {(@/@t), ei} a local orthonormal frame field, then we have

d't(ei) = dF (ei) ,
⇣

ere
i

d't

⌘

(ej) =
⇣

e5e
i

dF
⌘

(ej) ,
⇣

ere
k

ere
i

d't

⌘

(ej) =
⇣

e5e
k

e5e
i

d't

⌘

(ej) .

For k = 2` (` = 1, 2, · · · ),
d

dt
E2`('t) =

1
2

d

dt

Z

M

⌦

� · · ·�
| {z }

`�1

⌧('t),� · · ·�
| {z }

`�1

⌧('t)
↵

vg =

=
1
2

d

dt

Z

M

⌦

� · · ·�
| {z }

`�1

⇣⇣
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i

d't

⌘

(ei)
⌘

,� · · ·�
| {z }

`�1

⇣⇣

ere
i

d't

⌘

(ei)
⌘

↵

vg =

(12.35) =
1
2

d

dt

Z

M

⌦

4 · · ·4
| {z }

`�1

⇣⇣

e5e
i

dF
⌘

(ei)
⌘

,5 · · ·5
| {z }

`�1

⇣⇣

e4e
i

dF
⌘

(ei)
⌘

↵

vg .

Here, by using that (N,h) is the standard Euclidean space, we have

d

dt
E2`('t) =

Z

M

⌦

5 @

@t

0

B

@

4 · · ·4
| {z }

`�1

⇣⇣

e5e
i

dF
⌘

(ei)
⌘

1

C

A

,4 · · ·4
| {z }

`�1

⇣⇣

e5e
i

dF
⌘

(ei)
⌘

↵

vg =

(12.36) =
Z

M

⌦

4 · · ·4
| {z }

`�1

⇣
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i

dF
⌘
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⌘⌘

,4 · · ·4
| {z }

`�1
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e5e
i

dF
⌘

(ei)
⌘

↵

vg .

Because by using 4 = �
Pm

i=1{5e
i

5e
i

�5r
e

i

e
i

}, to see the equality in (12.36), we
only have to see 5@/@t(5XW ) = 5X(5@/@tW ) which follows from 5[@/@t,X] = 0
and R5 = 0 (due to Theorem 12.17. In the equations of (12.36), we have

5 @

@t

⇣⇣

e5e
i

dF
⌘

(ei)
⌘

=
⇣

e5 @

@t

5e
i

dF
⌘

(ei) =
⇣

e5e
i

e5 @

@t

dF
⌘

(ei) =

= e5e
i

n⇣

e5 @

@t

dF
⌘

(ei)�
⇣

e5 @

@t

dF
⌘

(re
i

ei)
o

=

(12.37) =
⇣

e5e
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e5e
i

dF
⌘

✓

@

@t

◆

�
⇣

e5r
e

i

e
i

dF
⌘

✓

@

@t

◆

.

Substituting (12.37) into (12.36), turns out the following.

d

dt
E2`('t) =
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⌦
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e5e
i

e5e
i

dF
⌘

✓

@

@t

◆

�
⇣

e5r
e

i

e
i

dF
⌘

✓

@

@t

◆�

,
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which is equal to

(12.39)
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Putting t = 0 in (12.35) ⇠ (12.39), (d/dt)|t=0 E2`('t) turns to be equal to
Z
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V ,��
�

� · · ·�
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where
⌧2`(') = �(W 2`�1
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⇤
For k = 2`+ 1 (` = 1, 2, · · · ),
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Then (12.40) is equal to the following:
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(12.41)

=
Z

M

⌦

⇣

e5e
i

e5e
i

dF
⌘

✓

@

@t

◆

�
⇣

e5r
e

i

e
i

dF
⌘

✓

@

@t

◆

,

4 · · ·4
| {z }

2`�1

⇣⇣

e5e
j

dF
⌘

(ej)
⌘

↵

vg ,

which is equal to the following:

(12.42)
Z

M

⌦

dF

✓

@

@t

◆

,
n

e5e
i

e5e
i

� e5r
e

i

e
i

o

4 · · ·4
| {z }

2`�1

⇣⇣

e5e
j

dF
⌘

(ej)
⌘

↵

vg .

Putting t = 0 in (12.40) ⇠ (12.42), d/dt|t=0 E2`+1('t) turns out to be equal to
Z

M

hV,��
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� · · ·�
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⌧(')
 

i vg = �
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where
⌧2`+1(') = �(W 2`

' ) = � � · · ·�
| {z }

2`�1

⌧(') .

⇤
For the flatness of the induced connection from the Euclidean space, we have the

following theorem.

Theorem 12.17. Let ' : (M, g) ! (N, h) = (Rn, h0), a C1 map, r, the induced
connection on '�1TN of the Levi-Civita one rN of (N, h), and Rr, its curvature
tensor. Then Rr(X,Y )s = 0 for all X, Y 2 X(M), s 2 �('�1TN).

Proof. Let (y1, · · · , yn) be the coordinate of Rn, and ' 2 C1(M, Rn). Every
s 2 �('�1TN) can be written as

s(x) =
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↵=1

s↵(x)
✓

@

@y↵

◆

'(x)

(x 2 M) ,

where s↵ 2 C1(M), (↵ = 1, · · · , n). Let (x1, · · · , xm) be a local coordinate on
U ⇢ M , '(x) = ('1(x), · · · ,'n(x)) (x 2 U), and X =

Pm
i=1 Xi(@/@xi), Y =

Pm
j=1 Yj(@/@xj) 2 X(M). Then
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since r@/@xi@/@y� = rN
'⇤(@/@xi)@/@y� = 0.

By the bracket relation

[X,Y ] =
m
X
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⇢
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(for x 2 U) ,

we have
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On the other hand, we have

rX

�

rY s
�

= rX

0

@

X

�,j

Yj
@s�
@xj

@

@y�

1

A =

=
X

i,j, �

⇢

Xi
@Yj

@xi

@s�
@xj

+ Xi Yj
@2s�
@xj@xi

�

@

@y�
,

and also

rY

�

rXs
�

=
X

i,j, �

⇢

Yi
@Xj

@xi

@s�
@xj

+ Yi Xj
@2s�
@xj@xi

�

@

@y�
.

Finally, by the above, and @2s�/@xj@xi = @2s�/@xi@xj , we have

rX(rY s)�rY (rXs) = r[X,Y ] s .

⇤
Some results of this section are due to the joint works with N. Nakauchi (cf.

[36]), and also S. Maeta and N. Nakauchi (cf. [26]).

References

[1] K. Akutagawa & S. Maeta Biharmonic properly immersed submanifolds in Euclidean
spaces, Geom. Dedicata, 164(2013), 351–355.

[2] P. Baird & J. Eells, A conservation law for harmonic maps, Lecture Notes in Math., 894,
Springer, 1981, 1–25.

[3] P. Baird, A. Fardoun & S. Ouakkas, Liouville-type theorems for biharmonic maps between
Riemannian manifolds, Adv. Calc. Var., 3(2010), 49–68.

[4] P. Baird & D. Kamissoko, On constructing biharmonic maps and metrics, Ann. Global
Anal. Geom., 23(2003), 65–75.

[5] P. Baird & J. Wood, Harmonic morphisms between Riemannian manifolds, Oxford Sci-
ence Publication, 2003, Oxford.

[6] R. Caddeo, S. Montaldo & P. Piu, On biharmonic maps, Contemp. Math., 288(2001),
286–290.

[7] B-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow
J. Math., 17(1991), 169–188.

[8] B-Y. Chen, Recent developements of biharmonic conjecture and modified biharmonic con-
jecture, arXiv: 1307.0245v3.

[9] J. Dorfmeister, F. Pedit & H. Wu, Weierstrass-type representations of harmonic maps
into symmetric spaces, Commun. Analysis and Geom., 6(1998), 633–668.

[10] J. Eells & L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10(1978),
1–68.

[11] J. Eells & L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc,
1983.

[12] J. Eells & L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.,
20(1988), 385–524.

[13] J. Eells & J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.,
86(1964), 109–160.

[14] M.P. Ga↵ney A special Stokes’ theorem for complete Riemannian manifold, Ann. Math.,
60(1954), 140–145.

[15] S. Gudmundsson, The bibliography of harmonic morphisms,
http://matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html

[16] T. Ichiyama, J. Inoguchi & H. Urakawa, Biharmonic maps and bi-Yang-Mills fields, Note
di Matematica, 28(2009), 233–275.

[17] T. Ichiyama, J. Inoguchi & H. Urakawa, Classifications and isolation phenomena of bi-
harmonic maps and bi-Yang-Mills fields, Note di Matematica, 30(2010), 15–48.



82 Hajime Urakawa

[18] J. Inoguchi, Sabmanifolds with harmonic mean curvature vector fields in contact 3-
manifolds, Colloq. Math., 100(2004), 163–179.

[19] S. Ishihara, S. Ishikawa, Notes on relatively harmonic immersions, Hokkaido Math. J.,
4(1975), 234–246.

[20] G.Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese
Ann. Math., 7A(1986), 388–402; Note di Matematica, 28(2009), 209–232.

[21] O.A. Ladyzhenskaya & N.N. Ural’tseva, Linear and quasilinear elliptic equations, Aca-
demic Press, New York, 1968.

[22] T. Lamm, Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var.,
22(2005), 421–445.

[23] E. Loubeau & C. Oniciuc, The index of biharmonic maps in spheres, Compositio Math.,
141(2005), 729–745.

[24] E. Loubeau & C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map,
Trans. Amer. Math. Soc., 359(2007), 5239–5256.

[25] E. Loubeau & Y-L. Ou, Biharmonic maps and morphisms from conformal mappings,
Tohoku Math. J., 62(2010), 55–73.

[26] S. Maeta, N. Nakauchi & H. Urakawa, Triharmonic isometric immersions into a manifold
of non-positively constsnt curvature, arXiv: 1309.0280.v2.

[27] S. Maeta & H. Urakawa, Biharmonic Lagrangian submanifolds in Kähler manifolds, Glas-
gow Math. J., 55(2013), 465–480.

[28] R. Miyaoka, Geometry of G2 orbits ans isoparametric hypersurfaces, Nagoya Math. J.,
203(2011), 175–189.

[29] S. Montaldo & C. Oniciuc, A short survey on biharmonic maps between Riemannian
manifolds, Rev. Un. Mat. Argentina, 47(2006), 1–22.

[30] H. F. Münzner, Isoparametrische Hypersurfläche in Sphäre, Math Ann., 251(1980), 57–71.
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